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CHAPTER 1 INTRODUCTION 

1.1. Medical Information Retrieval 

Medical Information retrieval (IR) can be considered as one of the most challenging 

information retrieval tasks, and just like any other medical task is of the highest priority. Although 

medical Information retrieval is a branch in information retrieval field, it has roots in other fields 

such as Clinical Decision Support (CDS) and Precision Medicine (PM). This task has been 

formulated for a variety of purposes, such as gnomic information retrieval [78], and its proposed 

methods can be categorized into three main classes. Those based on statistical methods, those 

based on knowledge bases and those based on a combination of them [106]. 

We consider medical IR scenarios for CDS and PM in which a query describes a patient 

case that can consist of multiple components including several sentences, name of disease, type 

of query, genes mutated, etc. In these medical IR scenarios, given a query provided by a clinical 

practitioner, we aim at finding relevant articles in medical literature that would support her in 

her decision-making process. Accurately answering information needs in CDS and PM tasks 

requires utilizing a variety of resources such as knowledge bases to capture explicit and latent 

query concepts and to determine their relative importance. 

PM [28] is a recent initiative that aims at personalizing healthcare by taking into account 

variability across different patients at the physiological and molecular levels. Successful 

realization of this initiative requires both significant advances in biomedical research, such as 

methods for the accurate assessment of the risk of healthy individuals developing a disease and 

selection of the optimal therapy for patients with a particular disease, and adoption of these 

scientific advances in clinical practice. By providing clinicians with supporting information in the 
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form of scientific articles relevant to a given description of a patient case, IR systems for CDS are 

a crucial link between scientific advances and clinicians at the point of care. Therefore, the 

development of methods and models for biomedical IR [90, 113, 37] that can provide clinicians 

with fast and reliable access to relevant biomedical publications and thus facilitate the selection 

of an optimal treatment for each individual patient from a large number of options is an 

important component of PM.  

Recently, an IR task for CDS was proposed in a special track on Clinical Decision Support 

in the Text REtrieval Conference (TREC-CDS) [95, 91, 89]. In this task, the queries typically 

correspond to complex information needs, which involve a large number of concepts of different 

types from different query fields such as patient demographics, symptoms of a disease or test 

results. For example, the query “A 4-year-old girl presents with persistent fever for the past week. 

The parents report a spike at 104° F. The parents brought the child to the emergency room when 

they noticed erythematous rash on the girl's trunk. Physical examination reveals strawberry red 

tongue, red and cracked lips, and swollen red hands. The whites of both eyes are red with no 

discharge.”, includes the query concepts that indicate the age and gender of a patient, describes 

several symptoms, such as erythematous rash, and test results, such as revealed swollen red 

hands and strawberry red tongue, as well as indicates a possible diagnosis, such as strawberry 

tongue (also known as Kawasaki disease). Although such queries are fairly long, only a fraction of 

concepts corresponding to an information need underlying those queries are directly mentioned 

in them, such as the concept strawberry tongue in the query above (i.e., explicit concepts), while 

many other concepts representing the same information need do not occur in the queries 

themselves, but can be found in other resources such as knowledge bases and pseudo-relevance 
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feedback (PRF) documents (i.e., latent concepts). For example, the concept Kawasaki disease that 

is not explicitly mentioned in the above query, can be found in UMLS knowledge base as one of 

the related concepts to the concept strawberry tongue and also in an article with the PubMed 

unique identifier (PMID) 3625593 (i.e., [33]), which is among the top retrieved documents for 

this query. Some of the information that exist in the raw query may not directly be used in a 

textual information retrieval system to retrieve clinical relevant documents. For example, gene 

mutation information that is described by a number of symbols for the type of gene and its 

mutation cannot be used as a keyword query because of their sparsities in a collection of textual 

documents such as PubMed. Therefore, for this type of information in the query, we need to 

mainly rely on its relevant concepts that we may obtain from a combination of knowledge bases. 

As in the general case of IR systems for CDS, the goal of IR tasks for CDS in PM [28] is to 

help healthcare providers find documents that are relevant to a patient case in an archive of 

biomedical articles. For example, a clinician may pose a query that includes information about 

the cancer type, patient age, gender and other factors regarding the patient case, such as gene 

mutations. In general, queries posed to IR systems for CDS in PM have three distinct properties. 

First, these queries are significantly shorter than medical case descriptions. Therefore, the 

proposed method is focused on effective query expansion rather than on information extraction 

and concept weighting. Second, these queries are structured with the fields of queries of differing 

importance. Third, these queries contain both textual and non-textual information. Specifically, 

they typically include genetic variant data (e.g., mutations in patient genes characterized by the 

gene name, such as “PIK3CA”, and amino acid (AA) position codes within the mutated gene, such 

as “E545K”). Genetic variants play an important role in personalizing treatment because they can 
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cause complex diseases, such as cancers, that share a similar set of symptoms to respond 

differently to the same treatment [8]. Therefore, the proposed method is focused on effectively 

incorporating gene mutation information into biomedical article retrieval.  

Recently proposed approaches to identify and weight query concepts are either based 

only on semantics [55, 101, 44, 103, 128] or are purely statistical [104, 69, 15, 17, 49, 70, 127]. 

Each of these two types of approaches are able to identify only certain types of concepts. For 

example, [55] identifies and utilizes only the concepts from the Unified Medical Language System 

(UMLS) that are extracted using the MetaMap tool [5] from PRF documents. Single-word and 

multi-word statistical concepts from the query and single-word concepts from PRF documents 

have been shown to be effective for ad-hoc retrieval in [70, 17]. A bag-of-words retrieval model 

utilizing medical concepts from PRF documents for query expansion was proposed in [101]. Choi 

et al. [27] proposed a method to represent multi-word UMLS concepts using sequential 

dependencies between their words. 

While previous work on general and domain-specific IR has focused on identification of 

the key statistical concepts in verbose queries [15, 16, 17], latent query concepts in external 

resources ([56, 103, 128, 129]) and the top-retrieved (PRF) documents [17, 70] individually, query 

transformation methods that use both explicit concepts from the query and latent concepts from 

diverse sources, such as external resources and PRF documents, has been less investigated. For 

example, Latent Concept Expansion (LCE) [70] and Parameterized Query Expansion (PQE) [17] 

methods use only unigrams from the top-retrieved documents as latent concepts, while [48] uses 

only unigrams from structured knowledge bases as latent concepts for query expansion. 

1.2. Knowledge bases in Medical Information Retrieval 
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Vocabulary mismatch and underspecified queries, which contain only a fraction of 

concepts that represent the information need (henceforth referred to as explicit concepts), are 

the two most common reasons for inaccurate and incomplete search results. Knowledge-bases 

can improve the retrieval quality by providing a possibility to fill the information gap between 

users and the machine. The knowledge that knowledge bases provides, may not be achieved 

from other resources like top-ranked documents. One of the ways to use knowledge-bases for 

information retrieval task is to extract the most relevant concepts from the list of related 

concepts in the knowledge base. Semantic types that are also provided by knowledge bases can 

be also used to narrow down the concepts into concepts that semantically are more related to 

the query. 

Synonyms of explicit concepts, as well as other concepts that are relevant to the 

information need, but are not explicitly mentioned in the query (henceforth referred to as latent 

concepts), can be extracted either from the top retrieved documents [17, 25, 70, 51] or from 

external knowledge repositories [30, 48, 117, 118, 119], such as knowledge bases and semantic 

networks, and added to a query through the query expansion process. Knowledge bases and 

knowledge graphs can be very effective for entity-bearing queries and are primarily utilized by 

first linking queries to entities in a knowledge graph [39, 87] and then enriching the query with 

elements of textual entity representations, including entity names, the names of related entities, 

categories and structured attributes [30, 118]. Leveraging general-purpose or domain-specific 

semantic networks or concept graphs, in which the nodes correspond to words or phrases and 

the typed edges designate semantic relationships between them, is an alternative approach to 
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query expansion that we focus on in this work. Such approach is applicable to any query, since it 

does not require query to contain entities that can be linked to a knowledge base. 

1.3. Concept graphs 

Concept graphs are used in domain-specific and general information retrieval systems to 

identify latent concepts in query and thus to fill the information gap between users and the 

retrieval systems [101, 55]. In domain-specific IR systems such as in medical IR systems, the 

source of these concepts can be either domain-specific such as Unified Medical Language System 

(UMLS) or general-purpose such as ConceptNet. In UMLS, each concept may correspond to one 

or multiple semantic types, which provide semantic information about UMLS concepts. In [55], 

the authors have proposed that the semantic types of concepts can be used to extract concepts 

from the concept graphs. As shown in [55], this list of semantic types needs to be different 

depending on the medical task (diagnosis, treatment, or test). It is described in [55] that by using 

these concept semantic types, which filters out a large portion of concepts, the concepts 

extended to the query can significantly improve the retrieval precision.  

In an IR task, a large of number of concepts, which are directly or indirectly related to the 

query, need to be examined to identify those that can improve the precision of retrieval results. 

In [30, 118, 117], only the concepts that are directly related to the original concepts are expanded 

to the original query. Not all concepts (or entities) that can increase the precision of an 

information retrieval system are directly related to the entities in the original query. So, in the 

mentioned papers, other resources to obtain related concepts are proposed. In other words, 

other than the concepts extracted from knowledge bases, concepts that are extracted from 

resources like top-ranked documents (PRF concepts) are considered as expansion concepts. The 
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majority of the concepts that are indirectly related to the original concepts are not useful and 

extracting useful and indirectly related concepts is a challenge. In [48] concepts that are directly 

and indirectly related to the original concepts are weighted and those with the highest weights 

are considered as the expansion concepts. In [48], the set of concepts that are weighted are 

selected from the concepts that are related to the original concepts through at most M 

intermediate concepts. Depending on the collection when M	 > 	3 or M	 > 	2 expanding new 

concepts only results in topic drift [48]. 

1.4. Concepts in Medical Knowledge-bases 

In a query generated by a medical practitioner, only a portion of concepts that are 

required to generate accurate retrieval results are usually provided in the original query 

generated by the user. These concepts, which are called explicit concepts, can be identified from 

the original query. The rest of the concepts, which are called latent concepts, can be extracted 

from resources like top-ranked documents, other concepts can be obtained from external 

resources, like knowledge bases.  

Medical domain concepts can be extracted from different resources such as SNOMED CT, 

UMLS, ICD-11, etc. UMLS metathesaurus is known to be the most comprehensive metathesaurus 

that is generated in the medical domain [80]. This metathesaurus is composed of CPT [9], ICD-

10-CM [107], LOINC [68], MeSH [60], RxNorm [82], and SNOMED-CT [115]. UMLS has also another 

knowledge source which is called semantic network [66]. UMLS semantic network provides broad 

categories which are called semantic types. Relationship between semantic types are also 

provided by this network. The third tool is called SPECIALIST Lexicon which is a Natural Language 

Processing (NLP) tool [41]. 
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Knowledge bases provide a variety of information on what are the concepts are and how 

they are related to each other. UMLS metathesaurus store this information by using two 

relational formats. The first is the Rich Release Format (RRF) and the Original Release Format 

(ORF). Each concept has a Concept Unique Identifier (CUI), Preferred Terms1 (PT) Designated 

synonyms (SY) and so on. Each of the atoms can have one PT, SY, or other Term Types in Source 

(TTY). A complete list of TTYs can be found2 in UMLS reference manual published by National 

Library of Medicine (NLM). For example, for concept “blood cancer”, the corresponding CUI is 

C0376545 and one of its preferred terms is “Hematologic Neoplasms”. From the provided tables 

in UMLS metathesaurus, the following information can be extracted: 

1. Atoms of a UMLS concept: Each atom is represented by an Atom Unique Identifier 

(AUI). This information exists in one of the tables of UMLS called MRCONSO. For example, 

for concept C0376545, around 150 atoms exist in the UMLS metathesaurus. These atoms 

are in different languages and for each language, one of them is the preferred term [21]. 

As an example, some of the atoms corresponding to concept C0376545 are shown in 

Table 1.1. One of the signs of redundancy in UMLS methathesaurus can be observed from 

this table. It can be seen that atoms A18563573, A1962117 have exactly the same string. 

This redundancy results in an ambiguity in text annotation process. In other words, in the 

process of annotating concepts from a free text, there are more than one candidate that 

                                                        
1 https://www.nlm.nih.gov/research/umls/new_users/online_learning/Meta_004.html 
2 https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/ 
abbreviations.html 
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can for the annotate concept [88]. Therefore, mapping of strings to their AUIs requires a 

word sense disambiguation process [81, 42]. 

Table 1.1.  Shorted list of 150 Atoms' string, Atomic Unique Identifier (AUI), Root Source 
Abbreviation (RSAB), Term Type in Source (TTY) and their UMLS object's Code for the concept 
C0376545 with preferred term \Hematologic Neoplasms". Resources that are used to get 
concepts in the following table are Collaborative Consumer Health Vocabulary (CHR) [97], 
Computer Retrieval of Information on Scientific Projects (CSP) [10], Human Phenotype Ontology 
(HPO) [10], International Classification of Primary Care 2 (ICPC2P) [18], MDR and MDRCZE [23]. 

2. Definitions of a UMLS concept: All of the definitions from different knowledge sources 

for a UMLS concept is provided in a UMLS table called MRDEF. For example, the definition 

provided for the concept C0376545 is: “Neoplasms located in the blood and blood-

forming tissue (the bone marrow and lymphatic tissue). The most common forms are the 

various types of LEUKEMIA, of LYMPHOMA, and of the progressive, life-threatening forms 

of the MYELODYSPLASTIC SYNDROMES.” This definition is provided by MESH, which is one 

of the knowledge sources of UMLS. 

 

string AUI RSAB TTY Code 

Blood cancer A18563573 CHV PT 0000031196 
blood cancer A18600614 CHV SY 0000031196 
bone carcinoma marrow A18605945 CHV SY 0000049723 
bone marrow carcinoma A18661683 CHV PT 0000049723 
cancer blood A18563574 CHV SY 0000031196 
carcinoma bone marrow  A18661684 CHV SY 0000049723 
hematologic cancer A18581974 CHV SY 0000031196 
hematologic malignancies A18582166 CHV SY 0000031810 
hematologic malignancy A18619355 CHV PT 0000031810 
hematologic neoplasms  A18638055 CHV SY 0000031810 
hematological malignancies A18582167 CHV SY 0000031810 
hematological malignancy  A18675129 CHV SY 0000031810 
malignancies hematologic A18563761 CHV SY 0000031810 
… … … … … 
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Table 1.2.  List of concepts related to concept C0376545 with preferred term “Hematologic 
Neoplasms”. In this table, REL denotes the concept relationship and RSAB denotes Root Source 
Abbreviation. RB is an abbreviation for broader relationship, RN is abbreviation for narrower 
relationship and RO is an abbreviation for having relationship other than synonymous, narrower, 
or broader. MTH stands for MeSH knowledge source. 

 

3. Relationship and inverse relationships of a UMLS concept: For the concept C0376545, 

the related concepts can be found in Table 1.2. It will be explained later that the concept 

relationships table is one of the most popular resources for query expansion. Query 

expansion process needs to obtain concepts that are related to the query concepts and 

also be useful for the query expansion [7]. In other words, it is not guaranteed that if a 

query expanded with its related concepts, the retrieval quality will improve. It is mainly 

because of redundancy in UMLS metathesaurus and not being UMLS designed for query 

expansion purposes. Some of the concepts do not have appropriate concept strings for 

the task of query expansion. For example, as can be seen from this table, the concept 

C0348393 with string “Malignant tumor of lymphoid hemopoietic and related tissue” has 

terms like “and related" that is not useful if added to the original query. Some strings have 

strings that has explanations about the concepts and are not good representative of their 

corresponding concepts [67]. On the other hand, the comprehensiveness of knowledge 

bases comes at the expense of their large dimensionality, redundancy. A very large 

number of concepts can be directly or indirectly related to a query, but only a small 

fraction of them are effective for query expansion. Recent decade has witnessed the 

CUI String REL RSAB 

C0376544 Hematopoietic Neoplasms RB MTH 
C3890429 Liquid Tumor RO MTH 
C0348393 Malignant tumor of lymphoid hemopoietic 

and related tissue 

RN MTH 
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emergence of a large number of general purpose and domain-specific on-line knowledge 

bases. 

Table 1.3 List of semantic types considered in [55] in the query expansion process. The concepts 
related to the query with semantic types mentioned in this table are considered as expansion 
concepts in [55]. In this table, STY is an abbreviation for semantic type and TUI for Type Unique 
Identifier.  

STY  TUI  Semantic type 

blor  T029  Body Location or Region 
bpoc  T023  Body Part, Organ, or Organ Component 
clnd  T200  Clinical Drug 
diap  T060  Diagnostic Procedure 
diap  T060 Disease or Syndrome 
fndg  T033  Finding 
hlca  T058  Health Care Activity 
inpo  T037  Injury or Poisoning 
inpr  T170  Intellectual Product 
medd  T074  Medical Device 
mobd  T048  Mental or Behavioral Dysfunction 
neop  T191  Neoplastic Process 
patf  T046  Pathologic Function 
phsu  T121  Pharmacologic Substance 
sosy  T184  Sign or Symptom 
top  T061  Therapeutic or Preventive Procedure 

 

4. Semantic types of the concepts and relationship between them: There are over 100 

semantic types and their relationships in the UMLS semantic network [66]. Not all of the 

concepts that related to the query concepts are useful for the query expansion task. One 

of the factors that can be considered to narrow down the options to more useful ones is 

to use semantic types of concepts [110, 55, 2, 45]. Different list of semantic types is 

suggested, such as the one shown in Table 1.3, to filter out UMLS concept for medical 

query expansion [55]. 

1.5. Overview of our Query Expansion Methods 
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We aim at improving the medical IR models that utilize knowledge bases for CDS and PM. 

The first method in this dissertation represents medical concepts extracted from verbose medical 

queries and knowledge bases. This method accounts for the differences in the importance of 

different knowledge bases in representing the medical query concepts. Next, we describe our 

method to compute the weights of a medical IR model with the goal of optimizing the retrieval 

performance. Then, we present our method to extract concepts from a concept graph with the 

objective of minimizing the number of evaluated concepts by keeping the retrieval performance 

above a certain threshold. The last method that we describe in this dissertation utilizes a Bayesian 

approach to utilize knowledge bases and perform query expansion in an IR task for PM.  

Utilization and Impact of this research in clinical practice: Our query expansion methods 

together with an IR system can help clinicians in their access to a collection of medical articles 

(such as PubMed) or a collection of Electronic Medical Records (EMRs) given a patient case in the 

form of the query. These methods can fill the vocabulary gap between an underspecified medical 

query and its relevant documents. They can be utilized in medical-domain search engines such 

as PubMed to improve the quality of the retrieval systems. The impact of these method can be 

significant under the following four scenarios:  

1. The medical queries are verbose. 

2. An effective query expansion requires a diversity of knowledge bases. 

3. Good expansion concepts (Concepts that can improve the retrieval performance) are 

indirectly related to the query concepts through intermediate concepts. 

4. An effective query expansion requires a prior knowledge about relatedness of 

expansion concepts to the query concepts. 
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CHAPTER 2 RELATED WORK 

Depending on the type of concepts used for query expansion, general-purpose and 

domain-specific retrieval methods can be categorized into the ones that are based on statistical 

concepts (i.e., determined based on term popularity and co-occurrence in a given collection) [15, 

17, 69, 70, 104], the ones that are based on semantic concepts (i.e., that are extracted from a 

knowledge repository) [55, 101, 103, 128], and those that combine semantic and statistical 

concepts [27, 94, 116, 45]. Below we provide an overview of the previously proposed methods 

in each of these three categories. 

2.1. Retrieval methods using statistical concepts.  

In the simplest case, these retrieval models utilize only unigrams from the top retrieved 

documents for query expansion [104]. More recent retrieval methods utilizing statistical 

concepts are based on the Markov Random Field (MRF) framework introduced by Metzler and 

Croft [69]. It assigns the same importance weight to all matching statistical query concepts of the 

same type (unigrams and sequential bigrams), when the retrieval score of a document is 

calculated. Latent Concept Expansion (LCE) extends MRF by also using unigrams from the PRF 

documents as latent concepts for query expansion. The requirement of having fixed weights for 

unigrams and bigram concepts in the MRF-based retrieval model was relaxed by the Weighted 

Sequential Dependence (WSD) model [16], which estimates the importance of each concept 

individually. A similar relaxation of LCE weights was implemented in the Parameterized Query 

Expansion (PQE) [17] model. Overall, query representation methods based on statistical concepts 

typically consider unigrams and bigrams in the query and/or unigrams in PRF documents. 

2.2. Retrieval methods using semantic concepts.  
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Semantic concepts for query expansion are typically extracted from domain-specific, such 

as the Unified Medical Language System (UMLS) [55], Medical Subject Headings (MeSH) [61] and 

Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) [46], or general-purpose 

knowledge repositories, such as Wikipedia [101, 119]. The utility of this type of concepts has been 

studied for a variety of medical IR tasks including medical literature retrieval [98, 129]. UMLS 

concepts are typically extracted from queries and top-retrieved documents using MetaMap [6, 

35, 55, 100, 101, 111, 112]. 

Soldaini et al. [101] proposed two methods for medical literature retrieval that use 

Wikipedia-based heuristics to filter out non-medical concepts from the original query and top 

retrieved documents. The first method (referred to as HT in [101] and Wiki-Orig in this 

dissertation) is a query reduction method, which retains only those bigram concepts in the 

original query that are determined to be health-related according to a heuristic. On the other 

hand, the second method (referred to as HT-PRF in [101] and Wiki-TD in this dissertation) 

expands the original query with a number of health-related concepts that are extracted from the 

top-retrieved documents and filtered out using the same heuristic. 

Accounting for semantic types of concepts3 can also significantly improve the accuracy of 

query expansion, as they can be used to filter out the candidate expansion concepts. The method 

proposed in [55] (referred to as UMLS-TD in this work), expands medical queries only with the 

UMLS concepts extracted from the top retrieved documents that have pre-selected semantic 

types. A semantic type is pre-selected if the concepts of this type improve the accuracy of 

retrieval results when added to the queries in the training set. For example, the semantic type 

                                                        
3 http://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml 
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“signs and symptoms” is pre-selected for a query about the diagnosis of a disease. [111] proposed 

another approach to using semantic types in the query, in which the semantic types of concepts 

are used to weight the concepts (concepts that are more likely to be effective, get higher weight). 

Retrieval models using both semantic and statistical concepts. The benefit of integrating 

semantic and statistical concepts was shown in [27, 45, 94, 116]. The methods in [27, 94, 116] 

focused only on explicit concepts (query unigrams and bigrams along with UMLS concepts 

extracted from the query using MetaMap). A medical IR system that integrates a graph-based 

representation of the corpus, structured knowledge sources and a retrieval model combining 

statistical IR methods with an inference mechanism implemented as graph traversal has been 

proposed in [45]. 

2.3. Concept graphs for query expansion  

Concept graphs are widely used in domain-specific [12] and general-purpose [30, 48] 

information retrieval (IR) systems. They provide structured knowledge that is necessary to fill in 

the gap between the information provided by a user in the form of a query and the information 

required by a retrieval system in order to return complete and accurate results. Concept graphs 

can be constructed from a document collection as in [11, 47, 48]; semantic network, such as 

ConceptNet [11, 48]; or from an entity-centric knowledge graph, such as DBpedia [11] or 

Freebase [11]. Since there can be a very large number of concepts in a concept graph that are 

related to a query, traditional methods for concept selection from the top retrieved documents, 

such as the one proposed in [25] and [119], that exhaustively evaluate all candidate concepts can 

be quite inefficient. 
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To tackle the difficulty of examining a large number of concepts, simple approaches [55, 

101] utilizing external information to prune useless expansion concepts have been previously 

proposed for domain-specific IR. Experimental evaluation of these methods have shown that it is 

possible to achieve a significant improvement in retrieval accuracy by pruning the candidate 

concepts with certain properties, such as semantic types. In particular, a medical IR system 

proposed in [101] discards candidate expansion concepts from the top retrieved documents that 

are determined to be unrelated to healthcare based on a simple Wikipedia-based heuristic. The 

method proposed in [55] does not consider the candidate concepts from the Unified Medical 

Language System concept graph, the semantic type of which does not belong to a pre-

determined list of semantic types known to be effective for specific medical tasks associated with 

medical record search queries. Since general-purpose retrieval systems operate with a larger and 

more diverse set of concept and query types than domain-specific ones, they cannot effectively 

prune candidate expansion concepts based on simple heuristics. 

Query expansion methods utilizing general-purpose entity-centric knowledge graphs, 

such as DBpedia and Freebase, have been extensively investigated in recent years [30, 117, 118, 

119]. These methods require annotations of the queries (and, in some cases, also of the 

documents) with links to Freebase entities, which makes them ineffective for the queries that 

are ambiguous, broad or do not contain proper nouns designating named entities that can be 

linked to a knowledge graph. 

Kotov and Zhai [48] studied the retrieval effectiveness of expansion concepts from 

ConceptNet that are related to the query concepts thorough one or several intermediate 

concepts. In particular, their method first sorts all ConceptNet concepts, which are related to the 
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query concepts through at most 2 intermediate concepts, according to predicted average 

precision AP) of retrieval results after adding each concept and uses the top 100 concepts with 

the highest predicted AP to create a query expansion language model. They found out that, 

although the majority of the concepts in the second and third concept layers do not improve the 

accuracy of retrieval results, there are several highly effective concepts in these layers. However, 

finding them requires evaluation of a large number of concepts. 

Sequential analysis (and active learning, its closely related area) have been adopted by 

many methods to deal with very large datasets. These methods aim to minimize the cost (or time) 

spent on obtaining reasonably accurate results. In IR, these methods have been applied to 

minimize (or reduce) the relevance feedback effort (i.e., the number of relevance judgments of 

retrieved documents), while maintaining an acceptable level of retrieval accuracy [54, 108, 125]. 

Diaz [31] proposed a method that sequentially selects query expansion terms from the top 

retrieved documents and achieves a significant improvement over standard pseudo-relevance 

feedback (PRF) approaches. 
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CHAPTER 3 Representing Concepts in Medical Information Retrieval 

3.1. Introduction 

In this chapter, we present a Markov Random Fields-based retrieval model and an 

optimization method for jointly weighting statistical and semantic unigram, bigram and multi-

phrase concepts from the query and PRF documents as well as three specific instantiations of this 

model that we used to obtain the runs submitted for each task in TREC 2015 Clinical Decision 

Support (CDS) track. These instantiations consider different types of concepts and use different 

parts of topics as queries.  

Previously proposed approaches to identify and weight query concepts are either based 

only on semantics [55, 101, 44, 103, 128] or are purely statistical [104, 69, 15, 17, 49, 70, 127]. 

Each of these two types of approaches are able to identify only certain types of concepts. For 

example, [55] identifies and utilizes only the concepts from the Unified Medical Language System 

(UMLS) that are extracted using the MetaMap tool [5] from PRF documents. Single-word and 

multi-word statistical concepts from the query and single-word concepts from PRF documents 

have been shown to be effective for ad-hoc retrieval in [70, 17]. A bag-of-words retrieval model 

utilizing medical concepts from PRF documents for query expansion was proposed in [101]. Choi 

et al. [27] proposed a method to represent multi-word UMLS concepts using sequential 

dependencies between their words.  

In this chapter, we present a Markov Random Fields-based retrieval model and an 

optimization method for jointly weighting statistical and semantic unigram, bigram and multi-

phrase concepts from the query and PRF documents as well as three specific instantiations of this 

model that we used to obtain the runs submitted for each task in TREC 2015 Clinical Decision 
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Support (CDS) track. These instantiations consider different types of concepts and use different 

parts of topics as queries.  

3.2. Method 

In this section, we provide the details of the six runs that were submitted to TREC 2015 

CDS track. Three of these runs were submitted for Task A and three others were submitted for 

Task B of this track. The runs submitted for Task B consider the diagnosis section provided for 

some of the topics in this task. These diagnosis sections are considered as n-gram concepts and 

added with the optimized weights to the expanded queries. As mentioned in [95], considering all 

of the runs in TREC 2014 CDS track, a very small difference in retrieval performance is observed 

when the query types (i.e., “Diagnosis”, “Test”, and “Treatment”) are taken into account. 

Therefore, query types are not taken into account in this work. 

In this work, we assume that the concepts representing the information need underlying 

the query exist both in the query itself as well as in other concept sources, such as PRF 

documents. We also assume the existence of sequential dependencies between the adjacent 

terms of multi-word concepts, which can be accounted for in retrieval by using the Markov 

Random Field (MRF) model [69]. In particular, our retrieval model builds upon the Markov 

Random Field-based Parameterized Query Expansion (PQE) framework [17], which assumes that 

the information need underlying a multi-term query can be categorized using three query 

concept types (unigrams, ordered bigrams, and unordered bigrams), each of which is associated 

with its own matching function. We extend this framework by considering more fine-grained 

concept types, depending on whether the concepts of the above three types occur in the query 

itself (including the multi-word UMLS concepts) or in the PRF documents, and thus providing a 
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more flexible concept matching strategy. Specifically, in our retrieval model, contribution of a 

query concept c to the retrieval score of document T, in which it occurs, is determined as: 

U*(*, T) = ∑ 78.8(*, T)8∈X      (3.1) 

where X is a set of all concept types, to which concept c belongs (a query concept can belong to 

several concept types; for example, if it occurs in both the query and the PRF documents) and 78  

is the relative importance weight of the concepts of type Y (all concepts of the same type are 

assigned the same weight). The final retrieval score of document D given a query is determined 

as a linear combination of contributions of all query concepts occurring in T:  

U*(=, T) = 	∑ I55∈[ 	U*(*, T) = ∑ I55∈[ 	∑ λ8.88∈X (*, T)     (3.2)	

where [ is the set of all explicit and latent query concepts, I5  is an indicator function that 

determines whether concept c is considered (i.e., it takes the value of 1) or not (i.e., it takes the 

value of 0). In other words, concept types are weighted, but individual query concepts can be 

used or discarded. The query set and relevance judgments from TREC 2014 CDS track were used 

to optimize concept importance weights and other parameters of the models. 

Concept types 

The methods that were used to obtain the 6 runs submitted to the CDS track are 

summarized in Table 3.1. Besides the type (manual or automatic) and part of the topic that they 

used as a query, these methods are different by the query concept types they consider. 

Overall, the submitted runs utilize 4 concept sources: the query itself, PRF documents, 

Unified Medical Language System (UMLS) concepts extracted from the query and Google search 

results. Query terms, PRF documents and UMLS concepts are used by the automatic methods. 

For manual methods, (i.e., wsuirdma, wsuirsmb and wsuirdmb), we manually extracted a number  
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Table 3.1: Summary of retrieval runs submitted to TREC 2015 CDS track. 
Method  Query  Method  Task  
wsuirsaa   summary  automatic A 
wsuirdaa  description  automatic A 
wsuirdma  description  manual A 
wsuirsab  summary  automatic B 
wsuirsmb  summary  manual B 
wsuirdmb description  manual B 

of concepts from Google search results and added them to the expanded query, in addition to 

the concepts from the other 3 sources. Concept types from different sources that were used by 

different retrieval runs are summarized in Table 3.2. 

All unigram concepts extracted from the original query are retained in the transformed 

query. Since the top retrieved documents may or may not be relevant to the original query, only 

a small number of unigram concepts with the highest weight in the relevance model [51] were 

added to the original query. The optimal number of these concepts was determined using the 

training data. UMLS concepts (which can consist of more than two terms) were extracted from 

the query using the MetaMap tool [5]. Multi-word UMLS query concepts were broken down into 

sequential bigrams. For example, a multi-word concept “Iron Deficiency Anemia” was 

represented using the Indri query language as follows:  

1.00 #weight( 
0.40 #combine( Iron Deficiency Anemia ) 
   0.35 #combine( #od4( Iron Deficiency ) 
                  #od4( Deficiency Anemia ) ) 
   0.45 #combine( #uw17( Iron Deficiency ) 
                  #uw17( Deficiency Anemia ) ) 
)  

where 0.40, 0.35 and 0.45 are the weights of the corresponding concept types. The window sizes 

for ordered and unordered bigrams (i.e., 4 and 17, respectively) were determined to optimal 
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based on the training data. It is notable that it is not necessary to normalize the mentioned 

weights in Indri query language to be sum-to-one as this normalization is done automatically by 

Indri.  

Since it was shown in previous work [93] that UMLS concepts may or may not improve 

the performance of the medical information retrieval, only the concepts that belong to the 

following semantic types (https://metamap.nlm.nih.gov/Docs/SemGroups_2013.txt) are 

included in the expanded query:  

• Clinical Drug 

• Disease or Syndrome 

• Injury or Poisoning 

• Sign or Symptom 

• Therapeutic or Preventive Procedure  

This list was obtained from an initial list of 16 semantic types in [55] through backward 

elimination process [73]. Unlike [55], in which the list of considered concept types is different for 

each query type (i.e., “Symptom”, “Diagnostic test”, “Diagnosis” and “Treatment” queries), we 

considered the same semantic types for “Diagnosis”, “Test” and “Treatment” queries.  

A number of concepts that were added to the original queries in manual runs were 

selected from the top 10 Google search results. This selection process is done manually from the 

content of the documents retrieved by the Google web search engine in response to the 

summary or description fields of TREC CDS topics used as queries. In the case of narrative queries, 

the queries were modified slightly to increase the recall in Google search. Only healthcare-related 

concepts that are relevant to the information need of queries were added to them. The number 
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of concepts that are extracted from Google search results and added to the transformed query 

depends on the relevance of documents in search results. Two factors that are considered in 

manually selecting the concepts from Google search results are:  

1. relatedness of these concepts to the medical domain (e.g., “Kawasaki disease” is a 

highly related concept),  

2. popularity of these concepts in medical domain (e.g., “health care” is too popular in 

the medical domain).  

In other words, the desired concepts for query expansion in this case are the ones that are highly 

related to the medical domain, but not too popular.  

Each concept type has different weight, as determined by its level of importance in the 

query. Intuitively, unigram query concepts are typically more important than unigram concepts 

from PRF documents. Therefore, choosing appropriate concept weights in (4.1) is a very 

important step in query transformation. We used Coordinate Ascent [71] to estimate those 

weights on the training data. In this optimization method, the weights are optimized one after 

another until convergence.  

3.3. Experiments  

All the runs reported in this work were obtained using Indri 5.72 [105] IR toolkit. A two-stage 

document language model smoothing method proposed in [124] was used in conjunction with 

all retrieval models. The accuracy of 6 submitted runs in terms of Inferred Average Precision 

(infAP), Inferred Normalized Discounted Cumulated Gain (infNDCG), R-precision (R-prec), 

Precision at 10 (P@10), and Mean Average Precision (MAP) is summarized in Table 3.3.  



www.manaraa.com

24 
 

 

Experimental results in Table 3.3 lead to several conclusions. First, we observe that 

wsuirdma, which is a manual method using unigrams from topic descriptions, PRF documents 

and Google search results, as well as ordered and unordered bigrams from UMLS concepts in 

topic descriptions and Google search results, has the highest performance in terms of all metrics 

for Task A of the CDS track. Second, we observe that wsuirdaa, which is an automatic method  

Table 3.2 Concept types utilized by submitted retrieval runs. 
Concept Types  w

suirsaa  

 w
suirdaa  

 w
suirdm

a  

 w
suirsab  

 w
suirsm

b  

 w
suirdm

b  

 

unigrams in topic summary       

ordered bigrams in UMLS concepts in topic summary        

unordered bigrams in UMLS concepts in topic summary        

unigrams in topic description       

ordered bigrams in UMLS concepts in topic description        

unordered bigrams in UMLS concepts in topic description        

unigrams in PRF documents       

unigrams in Google search results       

ordered bigrams in Google search results       

unordered bigrams in Google search results       

unigrams in diagnosis field       

ordered bigrams in diagnosis field       

unordered bigrams in diagnosis field        
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using topic descriptions as queries, outperforms wsuirsaa, which is another automatic method 

using topic summaries as queries. Similarly, for Task B, wsuirdmb, which is a manual method 

using topic descriptions as queries has significantly better retrieval accuracy than wsuirsmb, 

which is using topic summaries as queries. Third, we observe that incorporating information 

about diagnosis of the disease, which is provided in Task B, generally increases the retrieval 

accuracy of our models, particularly the manual ones. 

Table 3.3 Summary of performance for all submitted runs. 
Methods  infAP  infNDCG  R-prec  P@10  MAP  
wsuirsaa  0.0777  0.2928  0.2329  0.4633  0.1851  
wsuirdaa  0.0842  0.2939  0.2306  0.4667  0.1864  
wsuirdma  0.0880  0.3109  0.2493  0.4733  0.1968  
wsuirsab  0.0875  0.3246  0.2656  0.5067  0.2180  
wsuirsmb  0.0856  0.3208  0.2608  0.5033  0.2116  
wsuirdmb  0.1014  0.3690  0.2843  0.5200  0.2331  

Topic-level differences in terms of infNDCG between our best automatic and manual runs 

and the median performance of the corresponding runs submitted to the CDS track by all other 

teams for Task A and Task B are illustrated in Figures 3.1 and 3.2, respectively. For Task A, our 

best automatic and manual runs have greater infNDCG than the median for 22 out of 30 topics 

(73.33%). For Task B, our best automatic run has greater infNDCG than the median for 70% of 

the topics, our best manual run for this task has greater infNDCG than the median for 86.67% of 

the topics and is slightly worse than the median for only 4 topics. 
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Figure 3.1: Topic-level differences in terms of infNDCG between the proposed manual and 
automatic methods and the median for all TREC 2015 CDS track runs for Task A.  

 

Figure 3.2: Topic-level differences in terms of infNDCG between the proposed manual and 
automatic methods and the median for all TREC 2015 CDS track runs for Task B.  
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CHAPTER 4 AN OPTIMIZATION TECHNIQUE TO WEIGHT EXPANSION CONCEPTS FROM 

KNOWLEDGE BASES 

4.1. Introduction 

Given descriptive summary of a medical case as a query, the goal of information retrieval 

systems for clinical decision support (CDS) is to return articles from a collection of medical 

literature that are relevant to the query and can assist a clinician in making decisions regarding 

the case, such as prescribing a medication, procedure or treatment. A fundamental challenge 

faced by those systems is that although CDS queries are typically verbose and may consist of 

several sentences (e.g. “33-year-old male presents with severe abdominal pain one week after a 

bike accident, in which he sustained abdominal trauma. He is hypotensive and tachycardic, and 

imaging reveals a ruptured spleen and intraperitoneal hemorrhage”), only a small subset of query 

terms (henceforth referred to as explicit concepts) correspond to the key query concepts, such 

as “bike accident”, “abdominal trauma”, “tachycardia”, “splenic rupture”, “intraperitoneal 

hemorrhage”, which represent the information need behind this query, while many other 

important concepts that are relevant to this information need (e.g. “spontaneous spleen 

rupture”, “splenic trauma”, etc.) are not directly mentioned in the query (henceforth referred to 

as latent concepts). Providing complete and accurate retrieval results for CDS queries requires 

both correct identification of the key explicit concepts and addition of important latent concepts 

to the query, as well as precise weighting of explicit and latent concepts in the modified query. 

In this chapter, we describe our method to represent verbose clinical decision support 

queries using unigram, bigram and multi-term concepts from the query itself, as well as from the 

PRF documents and external knowledge bases (such as the Unified Medical Language System). 
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Our method is based on linear feature-based learning-to-rank retrieval framework [71], in which 

the relative importance weight is determined for each matching query concept individually as a 

linear combination of features. We also propose a set of features for each concept type, which is 

determined based on whether a concept is a unigram, bigram or multi-term phrase and whether 

it occurs in the query itself or is extracted from a top retrieved document or a knowledge base. 

 
Figure 4.1: The values of objective function corresponding to infNDCG retrieval metric by varying 
the weight of one of the features (GI presented in Section 6.2), which determines the importance 
of concept matches of certain type. 

Since the parameter spaces of linear feature-based retrieval models can be reduced to a 

multinomial manifold, their parameters can be estimated by direct maximization of the target 

rank-based retrieval metric (e.g. NDCG) over this manifold using derivative-free unconstrained 

multi-dimensional optimization methods, such as coordinate ascent [72] or hill-climbing [76]. 

These methods are based on the Powell's method, which divides a complex multi-dimensional 

optimization problem into several simple one-dimensional ones. After that, it iteratively 

optimizes a multivariate objective function by optimizing each parameter individually, while 

holding all other parameters fixed. Since line search is a local optimization method, the efficiency 

and accuracy of both the coordinate ascent and hill-climbing rely on the assumption of 
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smoothness and convexity of objective function when a free parameter is optimized, which is 

often violated in practice. Figure 4.1, which shows the behavior of the target retrieval metric by 

varying the value of a parameter that corresponds to the weight of a feature, illustrates this case. 

It can be seen that the objective function shown in this figure has several local maxima. 

The optimization method for learning the weights of concept importance features in 

feature-based retrieval models proposed in this paper leverages the Graduated Non-Convexity 

(GNC) (or continuation) optimization method [20] to address the issue of non-smooth and non-

convex objective functions, when individual parameters are optimized using the Powell's 

method. GNC is a derivative-free method specifically designed for global optimization of non-

smooth and non-convex objective functions. Graduated Non-Convexity (GNC) is an iterative 

method, which applies different degrees of smoothing to the original objective function to 

generate smoother and more convex objective functions, which have their global maximum close 

to the one of the original objective functions. The method starts by applying the highest degree 

of smoothing and then gradually decreases the rate of smoothing at each subsequent iteration 

using the result obtained at the previous iteration as the starting point for the next iteration until 

the global maximum for the original non-smoothed objective function is found. Although the 

quality of the solution attained by this approach heavily depends on the choice of the smoothing 

method, it was recently shown that Gaussian smoothing of a non-convex function is optimal in a 

sense that it evolves any function into its convex envelope [75].  

The key difference of the proposed method from existing methods for medical literature 

and ad hoc document retrieval is that it uses both statistical and semantic concepts extracted 

from diverse sources (query itself, knowledge bases and top retrieved documents) for query 
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representation. The proposed method also leverages an efficient optimization technique to learn 

the relative importance weight of different types of query concepts on the same scale. 

4.2. Method 

In this section, we present the details of the proposed query reformulation method, a set 

of features used with it and a method to optimize the weights of those features with respect to 

the target retrieval metric. The proposed query reformulation method combines explicit and 

latent query concepts from diverse sources and determines the weight of each individual concept 

as a linear combination of features, which depend on a concept type. The type of a query concept 

is determined by its source and whether the concept is represented by a unigram, bigram or 

multi-word phase. The set of concept sources considered in our method includes the query itself, 

top retrieved documents for the original query, and external knowledge repositories. 

Retrieval Model 

To account for term dependencies, the proposed method adopts a Markov Random Field 

(MRF) retrieval framework [69], in which the retrieval score of a document is determined as a 

weighted linear combination of the matching scores of different concept types in a given query. 

In particular, our method extends the parametrized concept retrieval model in [17], according to 

which the retrieval score of document D with respect to query Q is calculated as: 

                              U*(=, T) = ∑ ∑ 78(*).8(*, T)5∈]^8∈8_
                             (4.1)	

where ̀ 8  is a set of concepts belonging to concept type Y, and 78(*) is defined as the importance 

weight of concept *, which depends on its type. In the above equation, .8(*, T) is the matching 

score function of concept * in document T, which is defined as:  

                                            .8(*, T) = log	((1 − 7)
d(5,A)ef

g(h,ijk)
|hjk|

|A|ef
+ 7

d(5,]mL)

|]mL|
 (4.2) 
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where n(*, T) (n(*, `oK))	and |T|	(|`oK|) are the counts of concept * in document T (entire 

collection) and the size of document T (entire collection), respectively. The above matching 

function utilizes a two-stage smoothing method from [124], where 7 and p are Jelinek-Mercer 

and Dirichlet smoothing coefficients, respectively. Since only unigrams as well as ordered and 

unordered bigrams are considered in the MRF retrieval framework, concepts that are 

represented by multi-word phrases are broken down into unigrams and sequential bigrams. The 

set of concept types considered for a query = is designated by Yq and is shown in Table 4.2. This 

table also provides information about the concept extraction methods and a set of features 

corresponding to each concept type, which will be explained in detail below.  

The importance weight of concept c is parameterized using a set of importance features 

Φ8(*). Each concept type Y is associated with its own set of importance features, summarized 

in Table 5.4. Thus, the weight of concept * with type Y	is determined as a weighted linear 

combination of importance features: 

                                                    78(*) = ∑ 9s
dtd

u
dvw 	,  (4.3) 

where {tw, … , tu} is a set of features for concepts with type Y (i.e., Φ8(*) 	= {tw, … , tu}), and 

9s
d is the importance weight of the n-th feature (i.e., td). The intuition behind this concept 

weighting scheme is that different concept types have different importance and should be 

weighted accordingly. Intuitively, knowledge-based concepts (such as the UMLS concepts) that 

are linked from the concepts in the original query should have a different importance weight than 

the concepts that are extracted from the top retrieved documents. Similarly, bigrams 

corresponding to UMLS concepts identified in the original query should be weighted differently 

than other bigrams in the original query. On the other hand, features determining the importance 
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of a concept from a graph structured knowledge repository (e.g. UMLS), like the degree of the 

node corresponding to this concept, are different from the features that determine the 

importance of a unigram concept in top retrieved documents. 

Optimization Method 

Learning the feature weights that maximize the target retrieval metric on a training data 

can be considered as a multivariate optimization problem and is typically addressed by 

decomposing it into a set of one-dimensional optimization problems. Instead of performing a line 

search along every single dimension in optimizing a set of feature weights with respect to the 

target retrieval metric, we propose to use graduated optimization [20], an efficient global 

optimization technique. 

Graduated optimization 

Graduated optimization is an iterative optimization method that gradually finds the global 

optimum of a given objective function by finding the optima for a series of simplified objective 

functions. Each of these simplified objective functions is obtained from the original objective 

function by applying different degree of smoothing to make the original function more convex. 

It starts from the solution to the most simplified optimization problem (i.e., when the maximum 

degree of smoothing is applied to the original objective function) and considers this solution as 

the starting point for the second less simplified problem (i.e., less smoothed original objective 

function). This process continues until the global optimum for the original objective function is 

found. This procedure is based on the assumption that the global optimum of a given objective 

function at the current iteration is close enough to its global optimum at the next iteration. 

Therefore, at the next iteration, the region of the parameter space that is far enough from the 
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optimum point at the current iteration is ignored. As a result, a smaller region that is close to the 

optimum point at the current iteration is searched for the optimal parameter setting at the next 

iteration. 

Smoothing method 

In case of a univariate optimization problem with a single parameter 9s, the smoothed 

objective function, {|(9s), can be obtained by taking sample values from {(9s), the original 

objective function. To compute {|(9s) at a specific region around the starting point 9s,}, 

samples are taken from {|(9s) for the following values of 9s: 

                                                  ~�,s = [9s,ÅD,… ,9s,}, 9s,D]  (4.4) 

where 

                                                 9s,É = 9s,} + ÑΔ9s,							Ñ ∈ [−Ü,… ,Ü] (4.5) 

and Δ9s is the sampling interval. 

When a polynomial of degree á	is used for the smoothed objective function at point 

9s,É: 

                       {|à9s,Éâ = ∑ äãÑ
ã,å

ãv} 																				Ñ ∈ [−Ü,… ,Ü]   (4.6) 

The weight äãis determined so that the following Mean Square Error (MSE) is minimized: 

                                                   çs = 	
w

éDew
	∑ à{|(9s,É) − {(9s,É)â

éD
ÉvÅD                      (4.7) 

As shown in [92], optimal ä	 = 	 [äw, … , äD] is found as: 

                                                                     ä = (è^Yè)Åwè8~�,s,	  (4.8) 

where è is a Jacobian of the vector	[{|à9s,ÅDâ, … , {|(9s,D)], and its (Ñ, ë)-th element is 

obtained as: 
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                                    	[è]É,ã = (Ñ −Ü)ã,														Ñ ∈ [0, 2Ü], ë ∈ [0, á]. (4.9) 

where Ü,Δ9sand á control the smoothing rate of the objective function. 

Figure 4.2 illustrates three iterations of the smoothing procedure to find the optimal 

weight for one of the features (9:;). Points in Figure 4.2 indicate the samples taken from the 

objective function at each iteration, while the solid lines indicate the smoothed curves (i.e., 

estimated polynomials). The maximum of the smoothed curve is found and used as the starting 

point for the next iteration. At each subsequent iteration, the degree of smoothing is reduced by 

lowering Δ9 from 2.5 × 10Åé	to  2.5 × 10Åì	and then to 2.5 × 10Åî, while increasing á from 4 

to 5 and 6, while keeping Ü	constant (Ü	 = 	18). As follows from Figure 4.2, the smoothing 

standard deviation (<) is decreasing at each iteration of the optimization process, which indicates 

less smoothing and hence closer representation to the original objective function. 

 

Figure 4.2: Application of graduated optimization to estimate the weight of the feature GI using 
TREC 2014 CDS track queries as the training set. Red boxes indicate the range of 9:; considered 
at the next iteration. < is defined as the smoothing standard deviation. 

Multi-variate optimization 

The multivariate optimization method to train the weights of all features with respect to 

the target retrieval metric is summarized in Algorithm 1. We denote the vector of feature weights 

by 9s = ñ9s
dó

dvw

u
. As mentioned earlier, the weight 9s

d is estimated by using n − 1 previously 
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estimated weights at iteration ò (i.e. , 9ôs
w , … ,9ôs

dÅw) and the M − n estimated weights at the 

iteration	ò − 1	(i.e 9ôs
dew, … ,9ôs

u). Therefore, the univariate objective function to estimate the 

weight 9s
d can be written as: 

{d,öà9s
dâ = {(ñ9ôs

w , … ,9ôs
dÅw, 9ôs

d, 9ôs
dew, … ,9ôs

uó) (4.10)	

where {d,öà9s
dâ is a univariate objective function for the weight of the n-th feature at the j-th 

iteration. 

As can be seen from Algorithm 1, first explicit and latent concepts of training queries are 

extracted from different sources (line 1) and then 9s	is randomly initialized (line 2). At each 

iteration of the proposed optimization method (line 3), 9s is randomly shuffled (line 4). After 

that for each element of 9s (line 5) and for each sampling policy (line 6), the objective function 

(i.e., {d,öà9s
dâ is sampled at the points ~�,s

d = [9s,É
d ]ÉvÅD

D 	(line 7). The sampling policy 

determines the values of Ü, á, and Δ9 at each iteration of the optimization approach. The 

smoothed objective function {|d,ö(9s,É
d ) is obtained using the samples from {d,öà9s

dâ (line 7). 

Then, the optimum point of {|d,ö(9s,É
d ) (i.e., 9ôs,É

d ) is estimated (line 9). Next, the n-th element 

of 9s is replaced by its estimated value (i.e., 9ôs,É
d ) (line 10). These iterations continue until the 

number of iterations (i.e., j) goes beyond òÉõJ (line 3) or convergence (lines 13-15). 

Features 

Table 5.4 summarizes all distinct features that are used to calculate the importance 

weight of each query concept c depending on its type. The list of concept types, which are 

determined by concept source, term representation and identification method, along with a set 

of features that are used to calculate the importance weight of query concepts of each type are 
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shown in Table 4.2. Concepts belonging to some concept types come from only one source, while 

other concept types assume two sources. For example, since the concepts of type TUU are UMLS 

concepts that are represented by unigrams and extracted from the top retrieved documents, this 

concept type is associated with two concept sources (top retrieved documents and UMLS). 

As can be seen from Table 4.2, there are four different methods for identifying explicit 

and latent concepts in a query. The first and simplest method is to consider all unigrams and 

bigrams in a query or top retrieved documents as query concepts. The second approach uses 

MetaMap [6] to identify UMLS concepts in a query or top-retrieved documents. The third 

approach uses the Wikipedia-based health relatedness measure defined in [101] as: 

ℎùÑ(*) =
û(	#	is	health − related|* ∈ #)

1 − û(#	is	health − related|* ∈ #)
 

Algorithm 1 Algorithm to optimize the feature weights with respect to the target retrieval 
metric using graduated optimization. 
1: Identify explicit and latent concepts 
2: Randomly initialize the feature weights vector (9s) 
3: for ò	 = 	1: òÉõJ do 
4: Randomly shuffle 9s 
5:               for n	 = 	1 ∶ 	M do 
6:                             for each sampling policy do 
7:                         Sample {d,ö(9s

d) 
8:                         Obtain {|d,ö(9s,É

d ) 
9:                         Obtain the optimum point 9ôs

d 
10:                         Update n-th element of ~s by 9ôs

d 
11:                              end for 

12:                end for 

13:                if Convergence then 
14:                             Break 
15:                end if 

16: end for 
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where û(	#	is	health − related|* ∈ #) is the probability that a Wikipedia page # is health-related 

given that c occurs in #. Concepts for which this probability exceeds a pre-defined threshold are 

assumed to be health-related. The fourth approach uses the UMLS relationships table 

(MRREL.RRF table4, which we further also refer to as the UMLS concept graph) to select the 

concepts related to the UMLS concepts identified in a query as latent concepts. 

All features in Table 5.4, except Semantic Direction (SD), Semantic Popularity (SP) and 

Type Effectiveness (TE), are relatively simple and do not require a detailed explanation. Semantic 

direction is defined as follows. If	©5  is the semantic type of concept *, So is the semantic type of 

the query concept o, to which concept c is related and ™(©´, ©) is the distance (i.e., the number 

of edges) from the root node (©´) to node © in the UMLS semantic network, then the expansion 

concept * is defined to have an inward direction relative to the original concept o in the UMLS 

semantic network (i.e., the expansion concept is more general than the original query concept), 

if ™(©´, ©5) 	< 	™(©´;	©m). This feature is defined only for the UMLS expansion concepts that are 

related to the UMLS concepts in the original query. 

Semantic popularity of concept c is defined as the number of concepts that are related to 

concept c in the UMLS concept graph (it can also be viewed as a node degree of concept * in the 

UMLS concept graph). A large value of this feature indicates popularity and generality of concept 

*. Type effectiveness is a binary feature that indicates whether the UMLS semantic type of 

concept * is effective for query expansion. As defined earlier, a semantic type is effective if its 

corresponding concepts can increase the precision of retrieval results when added to a query. 

The concept of effective semantic types for medical query expansion was first proposed in [55]. 

                                                        
4 http://www.ncbi.nlm.nih.gov/books/NBK9685/ 
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Using the training queries and relevance judgments, we fine-tuned the set of effective semantic 

types from [55] to the collection and query sets used in this work. This will be explained in detail 

later. 

4.3. Experiments 

Experimental Setup  

The experimental results reported in this work were obtained using the corpus, which 

includes around 730,000 documents from PubMed Central (PMC), and queries from the Clinical 

Decision Support (CDS) track at TREC 2014 [95] and 2015 [91]. 3-fold cross-validation was used 

to evaluate the performance of the proposed method (INTGR) and the baselines, which were first 

trained using the query set and relevance judgments from the CDS track of TREC 2014 to 

maximize infNDCG, the official retrieval metric of the CDS track [95]. The proposed method and 

the baselines were implemented using Indri retrieval toolkit5. The optimal values of Dirichlet 

prior, Jelinek-Mercer interpolation coefficient, the sizes of ordered and unordered bigram 

windows in the Indri query language were empirically determined to be 2500, 0:4, 4 and 17, 

respectively. Figure 4.3 illustrates how infNDCG changes by varying the number of PRF 

documents (used to extract concepts) and the number of concepts extracted from PRF 

documents. The values of these parameters that maximize infNCDG were used in experiments 

using TREC 2015 CDS track queries. 

Besides the proposed graduated optimization approach, we used exhaustive line search 

to optimize individual feature weights as another baseline (INTGR-LS). This method examines the 

parameter  space  in  uniform  increments  and  chooses  the  setting  that  results  in  the highest  

                                                        
5 http://www.lemurproject.org/indri/ 
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Table 4.1: Brief description of features used to estimate the importance weight of concept *. 
Feature  Description 

TI TF-IDF of concept c in the collection 
CA Average collection co-occurrence of concept c with other concepts in the query 
CM Maximum collection co-occurrence of concept * with other concepts in the query 
NT Number of top retrieved documents containing concept * 
RS Sum of retrieval scores of top-ranked documents containing concept * 
TM Maximum co-occurrence of concept * with other query concepts in top retrieved 

documents 
TA Average co-occurrence of concept * with other query concepts in top retrieved 

documents 
GI Do infoboxes of Wikipedia articles corresponding to concept * contain any health-

related keywords? 
IS Does any of the terms of concept * exist in the title of any Wikipedia health-related 

articles? 
CD Average distance between concept * in the UMLS concept graph and other query, 

top document and related UMLS concepts identified for a query 
SP Popularity (node degree) of concept c in the UMLS concept graph 
SD Direction of concept c with respect to query concepts in the UMLS semantic network 
TE Does concept c have a UMLS semantic type that is effective for medical query 

expansion? 
 

 

Figure 4.3: Average infNDCG on TREC 2014 CDS track queries by varying the number of top 
retrieved documents used to extract the concepts and the number of UMLS and Wikipedia 
concepts extracted from the top retrieved documents. 
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infNDCG. For both INTGR and INTGR-LS methods, the convergence threshold for the change in 

infNDCG was set to 0:001 and the number of iterations was limited to 20. 

Baselines 

The first baseline that was used in experiments is two-stage smoothing [124] (Two-Stage). 

Two-stage smoothing was also used as the smoothing method in implementing all other 

baselines and the proposed method. The other baselines used in experiments are Relevance 

Model (RM) [51], Parameterized Query Expansion (PQE) [17], Wiki-Orig and Wiki-TD [101], which 

use a Wikipedia-based health relatedness measure defined in (4.11). Other baselines that use 

only semantic concepts are UMLS-orig [94] and UMLS-TD [55]. UMLS-orig extracts UMLS 

concepts only from the query itself and breaks the phrases designating UMLS concepts into 

bigrams in order to incorporate them into the SDM retrieval model [70]. UMLS-TD extracts UMLS 

concepts from the top retrieved documents according to their semantic types. Since the original 

implementations of UMLS-TD and Wiki-TD are based on bag-of-words retrieval models, UMLS-

TD_ and Wiki-TD_ are the modifications of UMLS-TD and Wiki-TD that use the SDM retrieval 

model to account for term dependencies when a concept is designated by a phrase. 

We also compare the performance of the proposed method to the best performing 

methods (which used topic summaries as queries) in the CDS track of TREC in 2014 [77] and 2015 

[13] (designated as TREC best). [77] used an ensemble of state-of-art unsupervised knowledge-

based query expansion, re-ranking and relevance feedback methods. In [13], queries re expanded 

with unigrams and UMLS concepts identified in the query itself and the top retrieved documents. 

Results 
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An initial list of 16 semantic types known to be effective for query expansion in medical 

records search was taken “as is” from [55]. We observed from the preliminary experiments that 

not all of these semantic types are effective for expansion of CDS queries. Therefore, we fine-

tuned this initial list of semantic types by excluding those semantic types, for which the 

corresponding concepts did not improve infNDCG of retrieval results on training queries. The 5 

semantic types retained from the initial list proposed in [55] are “Clinical Drug”, “Disease or 

Syndrome”, “Injury or Poisoning”, “Sign or Symptom” and “Therapeutic or Preventive 

Procedure”. 

Tables 4.3 and 4.4 provide a summary of retrieval accuracy in terms of different retrieval 

metrics of the proposed method (INTGR) and the baselines on the query sets from the CDS track 

of TREC 2014 and 2015. As can be seen from Table 4.3, Wiki-TD* is the best performing baseline 

(since the best performing TREC methods are different for different query sets, they are not 

considered as the best performing baselines). Furthermore, the proposed algorithm outperforms 

INTGR-LS and the best methods in TREC 2014 and 2015. 

Table 4.4 shows the degree of improvement and its statistical significance of the proposed 

method over the three best performing baselines (i.e., PQE, Wiki-TD, Wiki-TD*) and INTGR-LS. As 

follows from Table 4.4, INTGR significantly outperforms all of the best performing baselines in 

terms of all retrieval metrics. Using graduated non-convexity as a univariate optimization method 

results in 5-9% improvement of retrieval accuracy in terms of infNDCG, 10-23% improvement in 

terms of infAP and 8% improvement in terms of P@5 on different query sets. 

Table 4.5 illustrates the effect of using different knowledge bases in conjunction with 

INTGR on its performance in terms of different evaluation metrics. As follows from Table 4.5, 
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using INTGR only with Wikipedia results in the smallest improvement of retrieval accuracy across 

all retrieval metrics (and even a decrease of P@5). It also follows from this table that using INTGR 

with UMLS results in significantly greater improvement of all retrieval metrics, while the biggest 

improvement is achieved when explicit and latent concepts of a query are extracted from both 

UMLS and Wikipedia. 

                                  

(a) TREC 2014 CDS track topics  (b) TREC 2015 CDS track topics 

Figure 4.4:  Comparison of INTGR with the baselines in terms of P@k for ë	 ≤ 10 on the query 
sets from the CDS track of TREC 2014 and 2015. 

               

(a) TREC 2014 CDS track topics  (b) TREC 2015 CDS track topics 

Figure 4.5: Topic-level differences of the infNDCG values for INTGR and the best-performing 
baselines (Wiki-TD* for TREC 2014 CDS track and PQE for TREC 2015 CDS track). 
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(a) TREC 2014 CDS track topics  (b) TREC 2015 CDS track topics 

Figure 4.6: Topic-level comparison of the infNDCG values for INTGR, the best performing 
baselines (Wiki-TD* for TREC 2014 CDS track and PQE for TREC 2015 CDS track). 

Figure 4.4 provides performance comparison of INTGR with all of the baselines in terms 

of P@k for k from 1 to 10 (with a step size of 1). As can be seen from this figure, for all values of 

ë except ë	 = 	1 in case of TREC 2014 CDS track queries, INTGR significantly outperforms all other 

baselines. It also follows from Figure 4.4 that for most of the values of ë, the methods that expand 

the queries with the concepts extracted from the top-ranked documents (RM, UMLS-TD, UMLS-

TD*, PQE, Wiki-TD, Wiki-TD* and INTGR) outperform the methods that represent the queries 

with the concepts extracted from them (Wiki-Orig and UMLS-orig). The average improvements 

of INTGR in terms of P@k for different values of ë over the weakest and strongest baselines are 

0:1560 and 0:0380, respectively, on the query set from TREC 2014 CDS track, while on the query 

set from TREC 2015 CDS track the improvements are 0:0988 and 0:0481, respectively. 

Figure 4.5 illustrates topic level differences between the retrieval accuracy of INTGR in 

terms of infNDCG with the best performing baselines (Wiki-TD* for the CDS track of TREC 2014 

and PQE for the CDS track of TREC 2015) on both query sets. From Figure 4.5(a), it follows that 

infNDCG of INTGR is greater than that of Wiki-TD* on 67% of the queries in the CDS track of TREC 

2014, while from Figure 4.5(b) it follows that infNDCG of INTGR is greater than that of PQE on 

73% of the queries in the CDS track of TREC 2015. The average improvement of INTGR over Wiki-
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TD* in terms of infNDCG on TREC 2014 CDS track queries is 0.0518 with standard deviation 0.12, 

while the average improvement of INTGR over PQE in terms of infNDCG on TREC 2015 CDS track 

queries is 0.0345 with standard deviation 0.0734. The topics, on which INTGR has the greatest 

improvement and decline relative to Wiki-TD* in terms of infNDCG among those used in TREC 

2014 CDS track are 16 (with 0.4593 improvement) and 14 (with 0.1462 decline). We can also 

observe that on the query set of TREC 2015 CDS track INTGR has the greatest improvement of 

0.3026 and the greatest decline of 0.0512 in terms of infNDCG on topics 6 and 8, respectively. 

Figure 4.6 also provides a detailed comparison of retrieval accuracy of INTGR in terms of infNDCG 

with the best performing baselines (Wiki-TD_ for TREC 2014 CDS track and PQE for TREC 2015 

CDS track) at the level of each individual topic in the CDS track of TREC 2014 and 2015. 

We continued empirical evaluation of INTGR by analysis of its performance on difficult 

queries. We define a query as difficult if infNDCG of Two-Stage on this query is less than 0:1 and 

as very difficult if infNDCG of Two-Stage is less than 0.05. We observed that INTGR outperformed 

Wiki-TD* on 59% of difficult queries and on 86% of very difficult queries in the CDS track of TREC 

2014. We also observed that INTGR outperformed PQE on 56% of difficult queries and on 77% of 

very difficult queries in CDS track of TREC 2014. 

Discussion 

Based on experimental analysis of INTGR presented in the previous section, we can 

conclude that the subset of UMLS semantic types that are effective for expansion of CDS queries 

is fairly small (includes less than 4% of UMLS semantic types). These semantic types can be 

grouped into three categories: “Disorders”, “Chemical & Drugs”, and “Procedures”. These three 
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categories in turn can be conceptually mapped to the three main types of CDS queries: 

“Diagnosis”, “Treatment”, and “Test”.  

From tables 4.3 and 4.4, it follows that the proposed query representation method 

significantly outperforms all baselines in terms of all evaluation metrics and on both training and 

evaluation query sets. Furthermore, although INTGR was trained on the CDS track queries of TREC 

2014 with the goal of maximizing infNDCG, INTGR also achieved significant (and, in many cases, 

even greater) improvement over the baselines in terms of other evaluation metrics (i.e., infAP 

and P@5) on both training and testing query sets. Also, as can be seen from Tables 4.3 and 4.4, 

the proposed method has significantly better performance when it is used in conjunction with 

graduated optimization method (INTGR) than when it is used with exhaustive line search (INTGR-

LS), which we attribute to the ability of graduated optimization to efficiently find global optima 

of non-smooth and non-convex objective functions. Line search, on the other hand, may miss 

global optima, if the step size is not sufficiently small. In general, choosing the appropriate step-

size is non-trivial and can dramatically affect the performance of line search. 

As follows from Table 4.3, methods that utilize semantic (Wiki-TD/Wiki-TD* and UMLS-TD/UMLS-

TD*) and statistical (RM and PQE) concepts for query representation and expansion behave 

differently on training and evaluation query sets. In particular, methods using semantic concepts 

show better results than the methods based on statistical concepts on the training query set, 

while the methods based on statistical concepts show better results on evaluation query set. 

However, the proposed method (INTGR) provides excellent results on both query sets, which 

indicates the utility of accounting for both types of concepts in a retrieval method for CDS 

queries. On the other hand, Table 4.5 demonstrates  that  for  the  methods  based  on  semantic  
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Table 4.2. List of types for explicit and latent query concepts along with a set of features to 
estimate the importance of concepts of each type (Top-docs stands for top retrieved documents 
for the original query). 

Concept 

Type 

Concept 

Sources 

Concept 

Representation 

Concept Extraction Features 

QU  Query  unigrams  all query unigrams  TI, NT, RS, CA, CM, TA, TM 
QOB  Query  ordered bigrams all query bigrams  TI, NT, RS, CA, CM, TA, TM 
QUB Query unordered bigrams all query bigrams TI, NT, RS, CA, CM, TA, TM 

 
QUU Query, 

UMLS 
unigrams MetaMap TI, NT, RS, CA, CM, TA, TM,TE, SP, CD 

QUOB Query, 
UMLS 

ordered bigrams MetaMap TI, NT, RS, CA, CM, TA, TM,TE, SP, CD 

QUUB Query, 
UMLS 

unordered bigrams MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD 

QDU Query, 
Wikipedia 
 

unigrams health-relatedness 
measure 
 

TI, NT, RS, CA, CM, TA, TM, GI, IS 
 

QDOB Query, 
Wikipedia 

Ordered bigrams 
 

health-relatedness 
measure 
 

TI, NT, RS, CA, CM, TA, TM, GI, IS 
 

QDUB Query, 
Wikipedia 

unordered bigrams health-relatedness 
measure 

TI, NT, RS, CA, CM, TA, TM, GI, IS 
 

TU Top-docs unigrams  direct identification 
 

TI, NT, RS, CA, CM, TA, TM 

TOB Top-docs ordered bigrams 
 

direct identification 
 

TI, NT, RS, CA, CM, TA, TM 
 

TUB Top-docs unordered bigrams direct identification 
 

TI, NT, RS, CA, CM, TA, TM 
 

TUU Top-docs, 
UMLS 

unigrams MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD 

TUOB Top-docs, 
UMLS 

Ordered bigrams 
 

MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD 
 

TUUB Top-docs, 
UMLS 

 

unordered bigrams MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD 
 

TDU Top-docs, 
Wikipedia 

unigrams health-relatedness 
measure 
 

TI, NT, RS, CA, CM, TA, TM, GI, IS 
 

TDOB Top-docs, 
Wikipedia 

ordered bigrams 
 

health-relatedness 
measure 
 

TI, NT, RS, CA, CM, TA, TM, GI, IS 
 

TDUB Top-docs, 
Wikipedia 

unordered bigrams 
 

health-relatedness 
measure 
 

TI, NT, RS, CA, CM, TA, TM, GI, IS 
 

UU UMLS unigrams UMLS relationships 
 

TI, NT, RS, CA, CM, TA, TM, TE, SP, SD, CD 

UOB UMLS ordered bigrams UMLS relationships 
 

TI, NT, RS, CA, CM, TA, TM, TE, SP, SD, CD 

UUB UMLS unordered bigrams UMLS relationships TI, NT, RS, CA, CM, TA, TM, TE, SP, SD, CD 
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Table 4.3. Summary of retrieval accuracy of the proposed method and the baselines on the query 
sets from the CDS track of TREC 2014 and 2015. 

Query set TREC 2014 CDS track TREC 2015 CDS track 

Method  infNDCG infAP P@5 infNDCG infAP P@5 

Two-Stage [124]  0.1945 0.0493 0.3533 0.2110 0.0449 0.4200 
Wiki-Orig [101] 0.2069 0.0550 0.3533 0.2193 0.0457 0.4133 
UMLS-Orig [94] 0.2074 0.0569 0.3867 0.2206 0.0478 0.4400 
RM [51] 0.2662 0.0836 0.4400 0.2765 0.0740 0.4600 
UMLS-TD [55] 0.2577 0.1523 0.4067 0.2429 0.0748 0.4600 
UMLS-TD* 0.2724 0.0810 0.4133 0.2503 0.0614 0.4667 
PQE [17] 0.2796 0.0873 0.4733 0.2792 0.0762 0.4400 
Wiki-TD [101] 0.2764 0.0881 0.4467 0.2418 0.0597 0.4267 
Wiki-TD* 0.2883 0.0944 0.4600 0.2519 0.0633 0.4600 
TREC best [77, 13] 0.2631 0.0757 0.4067 0.2928 0.0777 0.4467 
INTGR-LS 0.3114 0.0993 0.4867 0.2987 0.0792 0.4800 
INTGR 0.3401 0.1229 0.5267 0.3135 0.0873 0.5200 

 
Table 4.4. Comparison of effectiveness of different knowledge bases on the query sets from 
the CDS track of TREC 2014 and 2015. Statistical significance and improvement in retrieval 
accuracy of the proposed method (INTGR) relative to its modification (INTGR-LS) and three best 
performing baselines (Wiki-TD, PQE and Wiki-TD*) on the query sets from the CDS track of TREC 
2014 and 2015. * and † indicate statistically significant improvement with #	 < 	0.05 and #	 <
	0.1, respectively.  Summary of retrieval accuracy of the proposed method and the baselines on 
the query sets from the CDS track of TREC 2014 and 2015. 

Query set TREC 2014 CDS track TREC 2015 CDS track 

Method  infNDCG infAP P@5 infNDCG infAP P@5 

Wiki-TD  23.05%*† 39.50%*† 17.91%*† 29.65%*† 46.23%*† 23.81%† 
PQE 21.64%*†  40.78%*† 11.28%† 12.28%† 14.56%* 18.18%*† 
Wiki-TD*  17.97%*† 30.19%*† 14.50%*† 24.45%*† 37.91%*† 13.04%*† 
INTGR-LS  9.22%*†   23.77%*† 8.22%*† 4.95%*† 10.22%* 8.33%*† 
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concepts, UMLS is a better choice than Wikipedia with respect to all metrics, if only one 

knowledge repository is used. However, as follows from Table 4.5, combining both knowledge 

bases results in better retrieval accuracy than using any one of them individually. Although from 

Figures 4.4 and 4.5 as well as Tables 4.3 and 4.4 it follows that INTGR has slightly lower accuracy 

improvement over its best-performing baseline and Two-Stage on the testing query set than on 

the training query set, the improvement that INTGR achieves over Two-Stage is much higher than 

the improvement of the best performing baseline over Two-Stage. However, as follows from 

Figures 4.6 and 4.5, there is a greater number of topics on which INTGR has better retrieval 

accuracy than the best performing baseline on both training and testing query sets. Therefore, 

based on these observations, we can conclude that INTGR is robust to overfitting, due to its use 

of multiple and diverse relevance signals and concept sources. 

Table 4.5. Comparison of effectiveness of different knowledge bases on the query sets from 
the CDS track of TREC 2014 and 2015. 

Query set TREC 2014 CDS track TREC 2015 CDS track 

Method  infNDCG infAP P@5 infNDCG infAP P@5 

INTGR using no 
knowledge bases 

0.2673 0.0875 0.4601 0.2771 0.0758 0.4633 

INTGR using only 
Wikipedia 

0.2975 
(11.30%)   

0.0936 
(6.97%)  

0.4533 
 (-1.47%) 

0.2954 
(6.60%) 

0.0779 
(2.77%) 

0.4667 
(0.09%) 

INTGR using only UMLS  0.3309 
(23.79%) 

0.1170  
 (33.71%) 

0.5200 
(13.02%)  

0.3012 
(8.67%) 

0.0786 
(3.93%) 

0.5033 
(7.93%) 

INTGR using UMLS and 
Wikipedia 

 0.3401 
 27.23%) 

0.1229 
 (40.46%)  

0.5267 
(14.47%) 

0.3135 
(13.14%) 

0.0873 
(15.17%) 

0.5200 
(11.52%) 
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CHAPTER 5 A SEQUENTIAL APPROACH TO EXTRACT EXPANSION CONCEPTS FROM CONCEPT 

GRAPHS 

4.1. Introduction 

Concept graphs can be constructed manually (e.g. ConceptNet [57]), or automatically 

from a given collection [3, 11, 47, 48] by considering any pair of terms or phrases that frequently 

co-occur in the same context (e.g., document) as semantically related. Concept graphs are 

utilized for query expansion by selecting the concepts related to the ones occurring in the query. 

However, since concept graphs are typically dense [57], there can be a large number of concepts 

that are immediately related to the query concepts. Although it has been previously shown that 

there exist very effective expansion concepts in remote layers of concepts related to the original 

query concepts (i.e., concepts with one or more intermediate concepts between them and the 

query concepts) [48], the number of candidate concepts that need to be evaluated increases 

exponentially with the number of layers to consider. However, only a small fraction of hundreds 

or potentially thousands of concepts that can be discovered in all layers of related concepts in 

the concept graph can improve retrieval results, while others need to be discarded to avoid noise 

and concept drift [50, 74, 84]. Figure 5.1 illustrates this problem for the query “poach preserve 

wildlife”, which we will use as an example throughout this work. According to ConceptNet 5, 

there are 374 concepts in the first layer of related concepts (that are directly related to the query 

concepts). Some of these concepts, such as “hunt” and “nature preserve”, are relevant to the 

information need behind this query and are useful expansion concepts. However, other related 

concepts, such as “boil”, “injure”, “keep”, “album” are not relevant to the information need 

behind this query and should be discarded. The concepts in the third layer, such as “capture” and 
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“wildlife sanctuary” that are also related to the information need behind this query should be 

separated from many other non-relevant concepts in this layer, even though some of these non-

relevant concepts are related to the useful concepts in the second layer.  

 

Figure 5.1: Fragment of the concept graph of ConceptNet 5 showing the concepts related to the 
concepts in the query “poach wildlife preserve”. The first number in parenthesis indicates 
concept layer, the second number is the index of a concept in the concept layer. 

Therefore, accurate evaluation and effective pruning of noisy concepts to find a small 

number of highly effective concepts for query expansion are the two fundamental challenges in 

effective utilization of concept graphs for query expansion. In this paper, we propose a two-stage 

method that addresses these challenges. The proposed method is illustrated for the case of our 

example query in Figure 5.2. 

In the first stage of the proposed method, all concepts in each concept layer are first 

sorted according to a quality measure calculated using a number of computationally inexpensive 

features, such as TF-IDF. Then, in the second stage of the method, a concept selection method 

that relies on more computationally expensive features is applied to sequentially select a set of 

expansion concepts from the concepts in each layer that are sorted in the first stage. This method 

selects the concepts from each layer in a one-by-one manner while maintaining the desired level 

of precision and minimizing the number of concepts that need to be examined. Therefore, a 



www.manaraa.com

51 
 

 

limited number of concepts are examined in each layer using computationally expensive features 

and a limited number of them are selected as expansion concepts. To improve the efficiency and 

avoid topic drift, only the concepts that are related to the concept selected in layer Æ are 

considered in layer Æ + 1. As a result, the proposed method avoids calculating computationally 

expensive features, such as average mutual information, for a large number of concepts in 

concept layers that are further away from the original query concepts. 

 

(a) Initial Concept Sorting (Stage I). 

 

(b) Sequential Concept Selection (Stage II) 

Figure 5.2: Illustration of the proposed two-step concept selection method for a set of related 
concepts in Figure 5.1. 

5.2. Method 

Due to a large number of candidate concepts that are related to the original query 

concepts, finding effective expansion concepts in a concept graph is a challenging problem, 
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particularly since most of the candidate concepts have zero or negative effect on the accuracy of 

retrieval results, when they are used for query expansion. The proposed query expansion method 

is based on the idea of sequential examination of concepts in different layers of a concept graph 

with respect to the original query concepts. It first evaluates the related concepts at each 

relationship layer by using a number of inexpensive features and then chooses subsets of related 

concepts to be evaluated carefully by using more expensive features. The method aims to 

minimize the total number of concepts evaluated in each layer, while maintaining the precision 

of retrieval results above a given threshold. This way, selection of effective expansion concepts 

can be formulated as an optimization problem, in which the objective is to minimize the total 

number of evaluated concepts subject to precision of retrieval results being above a given 

threshold. 

In this section, we present the details of our proposed method to address the problem of 

selection of effective expansion concepts from dense, large and noisy concept graphs. First, we 

discuss the details of the adopted query expansion model and then present the methods to 

construct concept graphs and use them for sequential selection of query expansion concepts. 

Query Expansion 

The proposed method is based on the Latent Concept Expansion (LCE) [70] framework. 

LCE was designed to incorporate the query expansion terms from the top retrieved documents 

into Markov Random Fields-based retrieval models [69], which allow to account for term 

dependencies. The proposed method uses the following scoring function of document T with 

respect to query =: 

                                            U(=, T) = 	∑ Ø∞
ã
∞v} ∑ .∞(T, (̀∞,ö)

D±
övw )  (5.1) 
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where Ø∞  is the weight of the concepts in the	Æ-th concept layer, k is the number of concept layers 

that are involved in the concept selection process, and Ü∞  is the number of concepts in the Æ-th 

concept layer. (̀∞,ö) in the above equation is the ò-th concept in the Æ-th concept layer. Let us 

define ℂ∞ = { (̀∞,ö)}öv}
D±  as the set of concepts in the Æ-th concept layer. In this case,	ℂ}contains all 

the unigrams in a given query. Retrieval models using unigrams only utilize ℂ}. ℂw includes the 

query concepts that can be found in the concept graph. 

A query is expanded with a limited number of concepts selected in each concept layer 

1 ≤ Æ ≤ ë. In the above formula, .∞(T, (̀∞,ö)) is the matching score of concept (̀∞,ö) in document 

T. Let us define 

                                                        ,(ë, T) = log(
≥2¥,µef

h∂¥
|i|

|A|ef
)                                 (5.2) 

as the matching score of concept ë with respect to document T. In the above equation, ,(ë, T) 

is the log-likelihood of ë in the language model of T smoothed using Dirichlet prior smoothing, 

p is the Dirichlet prior, |T| is the length of document T and |`| is the number of documents in a 

collection. ë can be a unigram 9, ordered	#∏9(π) or unordered #o™(π) bigram π. Any other n-

gram concepts are represented in terms of these three concept types. For example, the concept 

“wild life preserve” is decomposed into a set of unigrams (“wild”, “life”, “preserve”) and a set of 

bigrams (“wild life”, “life preserve”). Therefore, the matching score of document D with respect 

to concept (̀∞,ö)is defined as: 

.∞(T, (̀∞,ö)) = 	∫Y	 ª ,(9,T) +
º∈](±,Ω)

 

                                                                 +	∫æ	∑ ,(#∏9(π), T)>∈](±,Ω)  
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                                                                +	∫ø	∑ ,(#o™(π), T)>∈](±,Ω)
                                      (5.3) 

where ∫Y, ∫ø, and ∫æ are the weights of unigrams, ordered and unordered bigrams, 

respectively. By replacing Dirichlet smoothing in (5.2) with Jelinek-Mercer smoothing and 

considering only the concepts from the top retrieved documents as expansion concepts, we 

obtain the same retrieval function as used in the original LCE model [70]. 

The proposed method for query expansion consists of two stages. In the first stage, 

candidate expansion concepts are ordered with respect to a quality measure (defined below), 

while a sequential selection method to find the expansion concepts is applied in the second stage. 

As a result, only the concepts that are likely to be useful expansion concepts are evaluated in 

detail. Therefore, the key idea behind the proposed method is to use computationally 

inexpensive features to initially sort all related concepts and a combination of computationally 

expensive and inexpensive features to sequentially evaluate them and select the final set of 

concepts for query expansion. Sorting of the concepts in Stage I of the proposed method provides 

an initial understanding of concept usefulness, which is utilized in Stage II to minimize the number 

of evaluated concepts. These two stages as well as different methods to construct the concept 

graph are explained in more detail below. 

Concept Graphs 

Concept graphs used in experiments were constructed in two different ways. One way is 

to use a manually created semantic network, such as ConceptNet [57]. In this case, we only 

considered English concepts. If there is a link between the two concepts in ConceptNet, they are 

considered as related concepts in the concept graph. The other way to construct a concept graph 

is to use a collection itself [47]. Only unigram concepts are used in the concept graph in this case. 
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We used Hyper-space Analogue to Language (HAL) similarity measure [24] as a measure of 

semantic relatedness between the concepts. HAL considers two concepts as highly related if they 

frequently appear together within a sliding window of certain size (typically, 20 words) 

throughout a given document collection. 

Sequential Concept Expansion 

When concept graphs are large and dense, a very large number of concepts needs to be 

evaluated to select the useful expansion concepts. If we define ℂ¿ as the set of useful concepts 

(i.e., those that increase the precision of retrieval results, if added to a query) and ℂ as the set of 

all concepts in a concept graph, then the optimal solution to the concept selection problem is 

obtained by examining all possible subsets of expansion concepts with size 0 to |ℂ|. To obtain 

this optimal solution, 2|ℂ| subsets of concepts should be evaluated, which is clearly infeasible for 

any meaningful number of concepts. 

A simplified suboptimal solution for the concept selection problem is to evaluate only the 

concepts that are directly related to the query concepts via a number of intermediate concepts. 

To further simplify the concept selection process, instead of exhaustively examining all related 

concepts, we propose to evaluate them sequentially (i.e., one after the other). In this approach, 

starting from the query concepts, the concepts in closer concept layers (i.e., the ones that are 

semantically closer to the query concepts) are evaluated first. Although the concepts that are 

semantically closer to the query concepts are not necessarily more useful concepts, they are less 

affected by the noise propagated from the other concept layers. 

Let us define ℂ(∞,ö)
´  and ℂ(∞,ö)

¿  as the sets of related and useful concepts, respectively, when 

examining `(Æ, ò), the ò-th concept at relationship level Æ. Selection of the concept `(Æ, ò) for 
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query expansion can be formulated as a binary hypothesis testing problem with the null 

hypothesis ¡} and an alternative hypothesis ¡w defined as follows: 

H}:		 (̀∞,ö) ∈ ℂ(∞,ö)
´ − ℂ(∞,ö)

¿  

                               v. s.														Hw:	 (̀∞,ö) ∈ ℂ(∞,ö)
¿       (5.4)   

After a concept is selected from ℂ(∞,ö)
´ , it is removed from this set. Selecting a concept and 

adding it to the query changes the usefulness of other concepts; therefore ℂ(∞,ö)
¿  should also be 

modified after a concept is selected for query expansion. 

Stage I: Initial Sorting of Concepts 

The concepts are first sorted according to a linear combination of computationally 

inexpensive features: 

                                                   =|�(*) = 	∑ 7̅�,ö.ö(*),
É≈
övw  (5.5) 

where =|�(*) is a quality measure of concept *, .ö(*) is a feature function, 7̅�,ö  is a feature weight, 

and Ñ� is the number of inexpensive features. 

Stage II: Sequential Selection of Concepts 

Let us define ℂ|∞¿ as the set of concepts selected in the concept layerÆ ∈ {1, 2, … , ë}. It is 

preferable for the set ℂ|∞¿ to be as close as possible to the set of useful concepts in the concept 

layer Æ	(i.e., ℂ∞
¿). In each concept layer starting from the first (i.e., (̀∞,w)), the concepts are 

evaluated sequentially. After examining the ë-th concept layer, the total set of selected concepts 

is the union the concepts selected in each of the {1, 2, … , ë} concept layers: 

                                                              ℂ|ã¿≥ = 	⋃ ℂ|ã
¿ã

∞vw                                                      (5.6) 

An entire set of selected concepts can be obtained by solving the following optimization 

problem: 
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min
	ℂ|¥

… 
ÀªM∞

ã

∞vw

Ã 

                                              such that 	{àℝŒœ; –â > —q (5.7) 

In the above equation, M∞  is the number of concepts evaluated in the Æ-th concept layer. M∞  is less 

than or equal to the number of concepts in the Æ-th concept layer (i.e., M∞ ≤ 	Ü∞). {àℝŒœ; –â is a 

retrieval quality evaluation metric for a set of document rankings, ℝŒœ, based on the training data 

–. Document rankings ℝŒœ are those that correspond to the expanded query, which contains the 

selected concepts	ℂ|ã¿≥. In (5.7), —qis a pre-specified lower threshold for {àℝŒœ; –â. 

The goal of the above optimization procedure is to address the problem of dealing with a 

large number of related concepts that need to be evaluated in each concept layer. This goal is 

accomplished by selecting concepts in such a way that the least number of concepts is evaluated, 

while maintaining an acceptable value for the target retrieval metric (e.g. MAP). The set	ℂ|ã¿≥ can 

be approximated by Algorithm 2. In this algorithm, =|´à (̀∞,ö)â	is a measure of retrieval 

effectiveness of the candidate concept (̀∞,ö) that can be calculated using expensive and 

inexpensive features as a weighted linear combination of feature functions as follows: 

                                    =|´à (̀∞,ö)â = 	∑ 7̅´,ö.öà (̀∞,ö)â,
É“
övw  (5.8) 

where 7̅´,ö	is the weight of a feature function .öà (̀∞,ö)â, and Ñ´  is the number of expensive and 

inexpensive features. =|´à (̀∞,ö)â	is applied to the concepts that are already sorted using =|�(*). 

Different decisions can be made by comparing =|´à (̀∞,ö)â	with the upper and lower thresholds 

(denoted by ”C and ”E). One of the decisions that can be made as a result of such comparisons 

is whether to select	 (̀∞,ö) as an expansion concept or to discard it. The other decision is whether 
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to continue examining and evaluating the concepts in the same concept layer or to switch to the 

next concept layer and start examining its concepts. These decisions are formalized in Table 5.1. 

Computational complexity of this algorithm can be reduced further by discarding the 

concepts that have =�(*) below a threshold ”�,E in stage I of the algorithm (i.e., those that have 

=�(*) < ”�,E). In this case, the number of concepts that are evaluated in the Stage II of the 

algorithm can be decreased at the expense of retrieval performance degradation, the degree of 

which is controlled by the value of ”E. 

5.3. Experiments 

Statistics of the collections used for experimental evaluation of the proposed method are 

shown in Table 5.2. Parameters and hyperparameters of the proposed method and the baselines 

were optimized with respect to the Mean Average Precision (MAP) on the training set. The 

concepts in the first concept layer are obtained by using different methods depending on how 

the concept graph was constructed. If the concept graph is constructed from the collection, this 

set of concepts consists of all unigrams in the query. If the concept graph is obtained from 

ConceptNet, this  set  of  concepts  consist  of  the  longest  query  n-grams  that  correspond  to  

Table 5.1. Three possible decisions that can made by evaluating concept c using the proposed 
method.  

Decision Criterion 

Select concept (̀∞,ö)	& 
continue with the same concept layer 

If 	=|´à (̀∞,ö)â ≥ ”C 

Discard concept (̀∞,ö)	& 
continue with the same concept layer 

If  ”E ≤ =|´à (̀∞,ö)â < ”C 

Discard concept (̀∞,ö)	& 
move to the next concept layer 

If =|´à (̀∞,ö)â < ”E 
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Algorithm 2 The proposed two-stage algorithm to obtain a set of expansion concepts. 
1: Æ = 1 
2: ℂ|ã

¿≥ = {} 
3: do  

4:         ℂ|∞¿ = {} 
5:        for * ∈ ℂ∞  do  

6:                 compute =|�(*) 
7:         end for 

8:         sort ℂ∞  according to =|�(*) 
9:        for ò = {1, … ,Ü∞} do 

10:                 compute =|´à (̀∞,ö)â 
11:                 if =|´à (̀∞,ö)â < ”C then 
12:                          add (̀∞,ö) to ℂ|∞¿ 
13:                 end if 

14:                  if =|´à (̀∞,ö)â < ”E then 
15:                          Æ = Æ + 1 

16:                 end if 

17:          end for 

18:           ℂ|ã¿≥ = 	ℂ|ã
¿≥ ∪ ℂ|∞

¿ 

19: while ℂ|∞
¿ ≠ {} 

Table 5.2. Statistics of experimental collections. 
Collection  # of documents  # of terms 

TREC7-8  472,526  2.16 × 10⁄ 
ROBUST04  528,155  2.53	 × 10⁄ 
GOV 	1,247,753  1.37 × 10¤ 

ConceptNet concepts. The concepts in other concept layers were selected by using the links 

between the concepts in the constructed concept graph, and they can be n-gram concepts with 

n ≥ 1. 

Baselines  

The primary goal of the sequential concept selection method presented in Section 5.2 is 

to minimize the number of evaluated candidate expansion concepts from the concept graph. 

Considering the trade-off between the precision and the computation time, four variations of the 
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proposed method, which are summarized in Table 5.3 and Figure 5.3, are considered as baselines 

in experiments. In Table 5.3: 

                                           =>à (̀∞,ö)â = 	∑ 7‹>,ö.ö( (̀∞,ö))
É≈
övw  (5.9) 

is a quality measure computed as a linear weighted combination of the feature functions. It is 

assumed that the retrieval system has limitation on computational complexity. So, the set of 

features used to calculate the quality measure =>(*) for the baselines is the same as the set of 

features used to calculate =�(*) in (5.5) for our proposed method. In Table 5.3, ?(*) is the index 

of a concept in the sorted set of concepts and Li is the number of selected concepts from the Æ-

th concept layer. 

Table 5.3. Summary of the proposed method and the baselines 

Method  
Optimization Problem Criteria in the Approximate Solution 
Objective  Constraint Selecting Rejecting Stopping 

Method A  min›∑ fi∞
ã
∞v} fl {àℝŒœ

ã; –â > — =>(*) > ”q =>(*) < ”q Æ > ë 

Method B max›{(ℝŒœ
ã; –)fl ªfi∞

ã

∞v}

< — ?∞(*) < ”; ?∞(*) > ”; Æ > ë 

Method C min	 Àªfi∞

ã

∞v}

Ã {àℝŒœ
ã; –â > — =>(*) > ”q =>(*) < ”q Æ > ë 

Method D [48] max›{(ℝŒœ
ã; –)fl ªfi∞

ã

∞v}

< — ?(*) < ”; ?(*) > ”; Æ > ë 

Proposed  min ÀªM∞

ã

∞v}

Ã {àℝŒœ
ã; –â > — =´(*) > ”C =´(*) < ”E fi∞ = 0 

As follows from Table 5.3, when expansion concept selection problem is formulated as 

minimization of the number of concepts by keeping the evaluation metric above a desired level 

(i.e., methods A and C), the approximate solution is to select concepts if their quality measure 

=>(*) is above a threshold and reject otherwise. But, in the case of maximization of retrieval 

precision by putting a constraint on the number of selected concepts (i.e., methods B and D), the 
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approximate solution is to select a limited number of concepts that result in the highest 

improvement in average precision. 

 

 

(a) Method A: Single threshold on =>(*) in 
each layer 

 

(b) Method B: Single threshold on ?(*) in 
each layer. 

 

(c) Method C: Single threshold on =>(*)	in all  
layers 

 

(d) Method D: Single threshold on ?(*)	in all 
layers [48] 

Figure 5.3: Graphical summary of the baselines A-D. The thresholds placed on the quality of 
concepts (=>(*)) or the number of selected concepts (?(*)) in each or all of the concept layers 
are shown by the red lines.  

As can be seen from Table 5.3, methods A and B, similar to our proposed method, but 

unlike methods C and D, select the expansion concepts from different relationship layers 

sequentially. In other words, in methods A and B and in our proposed method, the concepts in 

concept layer i are examined, if their ancestor concept nodes in concept layer Æ − 1 are selected. 

However, methods C and D first find a set of all concepts in the layers 1 ≤ Æ ≤ ë and examine all 

of them at once. Since these methods do not prune the concepts in previous concept layers, noise 

can get propagated from layer Æ − 1 to layer	Æ. 
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In methods B and D, the threshold (indicated by ”∞  in Table 5.3) is on the number of 

selected concepts, but, in methods A and C and the proposed method, the thresholds (shown by 

”q, ”E , and ”C in Table 5.3) is on the quality of concepts. Therefore, unlike methods B and D, the 

thresholds in methods A and C and the proposed method do not limit the number of expansion 

concepts, and depending on the query, the collection and the required level of retrieval accuracy, 

the optimal number of expansion concepts is determined automatically. Although methods A 

and C and the proposed method do not use a predefined threshold on the number of expansion 

concepts, they use a predefined threshold on quality measures (=>(*) or =´(*)). In methods A 

and B and the proposed method, there are distinct thresholds for each concept layer, while in 

methods C and D, there is only one single threshold for all concept layers. As described in more 

detail later, ”q and ”; as well as ”E and ”C are optimized with respect to their objective functions 

and constraints by using a coordinate descent method. 

Our proposed method stops at the concept layer Æ, if no concept is identified at this layer 

(i.e., if fi∞ = 	0), but the methods A-D have predefined limits on the total number of examined 

concept layers (i.e., ë). In other words, the proposed method stops when there is not enough 

evidence that there are useful concepts in other concept layers, while methods A-D stop when 

they examine a given number of concept layers. Therefore, unlike the baselines A-D, the number 

of concept layers examined by the proposed method differ from query to query. 

Finally, none of the baselines A-D consider minimizing the number of evaluated concepts. 

The constraints used by methods B and D are on the number of selected concepts, and the 

objective functions of methods A and C are minimizing the total number of selected concepts. 
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Table 5.4. Features used in stages I and II of the proposed method. All of the listed features are 
considered in stage II of the proposed method, but only the features without asterisks are 
considered in Step I of the proposed method. 

Feature  Description 

hgstDocScore  Retrieval score of the highest ranked document containing (̀∞,ö) 
avgDocScore  Average retrieval score of all documents containing (̀∞,ö) 
varDocScore Variance of retrieval score of all documents containing (̀∞,ö) 
avgTDocScore Average retrieval scores of the top documents containing (̀∞,ö) 
termFreqTpDoc Number of occurrences of (̀∞,ö)	in the top documents 
docFreqTpDoc Number of top documents containing (̀∞,ö) 
nodeDegree Node degree of (̀∞,ö)	in the concept graph 
avgNumLinks Average number of paths between (̀∞,ö) and query concepts 
maxNumLinks Maximum number of paths between (̀∞,ö)and query concepts 
avgCooccur* Average co-occurrence of (̀∞,ö) with query concepts 
maxCooccur* Maximum co-occurrence of (̀∞,ö)	with query concepts 
maxTCooccur Maximum co-occurrence of (̀∞,ö)	with query concepts in top retrieved documents 
avgTCooccur Average co-occurrence of (̀∞,ö) with query concepts in top retrieved documents 
avgTCooccurP* Average co-occurrence of (̀∞,ö) with at least a pair of query concepts in top retrieved 

documents 
maxTCooccurP* Maximum co-occurrence of (̀∞,ö)	with at least a pair of query concepts in top 

retrieved documents 
avgTCooccur* Average co-occurrence of (̀∞,ö) with all previously selected concepts in top retrieved 

documents 
maxTCooccur* Maximum co-occurrence of (̀∞,ö) with all previously selected concepts in top 

retrieved documents 
avgCooccurL* Average co-occurrence of (̀∞,ö) with selected concepts in concept layer Æ − 1 
maxCooccurL* Maximum co-occurrence of (̀∞,ö) with selected concepts in concept layer Æ − 1 
avgTCooccurL* Average co-occurrence of (̀∞,ö) with selected concepts in concept layer Æ − 1 in top 

retrieved documents 
maxTCooccurL* Maximum co-occurrence of (̀∞,ö) with selected concepts in concept layer Æ − 1 in 

top retrieved documents 
avgTMiP* Average mutual information of (̀∞,ö)	with at least a pair of query concepts in top 

retrieved documents 
maxTMiP* Maximum mutual information of (̀∞,ö)	with at least a pair of query concepts in top 

retrieved documents  
avgTMiL* Average mutual information of (̀∞,ö) with selected concepts in concept layer Æ − 1 

in top retrieved documents 
maxTMiL* Maximum mutual information of (̀∞,ö)	with selected concepts in concept layer Æ − 1 

in top retrieved documents 
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The other baselines that are considered in our experimental evaluation are Query 

Likelihood retrieval model [86] with Dirichlet prior smoothing (QL) [122], Relevance Model (RM) 

[51], Sequential Dependence Model (SDM) [69] and Latent Concept Expansion (LCE) [70]. 

 

Figure 5.4: MAP after removing one feature from the list of features in Table 5.4 that results in 
the highest decrease of MAP at a time. 

Features 

Two sets of features are used in the proposed two-stage method. The first set consists of 

only computationally inexpensive features that are used to initially sort the concepts in the first 

stage of the proposed method. The second set consists of mostly computationally expensive 

features that are used to select the concepts in the second stage of the proposed method. 

Computationally expensive features include the ones that are based on co-occurrence and 

mutual information [64]. Specifically, the first set of features is used to calculate =�( (̀∞;ö)) in (5.5) 

and the second set is used to calculate =´( (̀∞;ö)) in (5.8). 

According to Table 5.4, the number of inexpensive features (designated by Ñ� in (5.5)) is 

11, and the total number of expensive and inexpensive features (designated by Ñ´  in (5.8)) is 25. 

In this table, 16 features depend on the top retrieved documents, 6 on the collection and 3 on 
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the concept graph. The top retrieved documents are obtained only once using SDM retrieval 

model with the original query. The number of top retrieved documents is a hyper-parameter of 

the proposed method that is estimated using cross-validation. 

To determine the relative importance of features, we conducted a study, the results of 

which for the ROBUST04 collection are reported in Figure 5.4. In this study, we started with a full 

feature set and removed one feature, which results in the highest reduction of MAP after being 

removed from the feature set, at a time. The weights of other features have been updated to 

satisfy the conditions of the optimization problem each time a feature was removed. As follows 

from Figure 5.4, the features that are utilized in both stages of the proposed method have the 

highest impact on its retrieval accuracy. It can be also concluded that the features that are 

dependent on the collection tend to have a greater effect on retrieval performance than other 

features. Finally, when all the features are removed, retrieval results are obtained using only the 

concepts in the original query, which have a higher importance weight relative to the expansion 

concepts. 

Different combinations of the features listed in Table 5.4 can be utilized for query 

expansion, depending on the collection and query set. In particular, from an entire set of features 

listed in Table 5.4 we obtained smaller sets of highly effective features for each experimental 

collection via a backward feature elimination process, when the features that have negative 

effect on retrieval accuracy are eliminated one at a time. 
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(a) TREC 7-8 

 
(b) ROBUST04 

 
(c) GOV 

Figure 5.5: MAP of the proposed method in terms of ”C and ”E at the 2nd concept layer. 

Three-fold cross validation was used to evaluate the performance of the proposed 

method and the baselines. At each cross validation fold, the thresholds ”C and ”E  for each 

concept layer as well as the weights of the features in stages I and II of the proposed method 

(i.e., 7�.ö  and 7´.ö	in (5.5) and (5.8)) were optimized in such a way that the MAP of the top 

retrieved documents stays above the threshold —, while the number of concepts examined in 

stage II of the proposed method is minimized. Coordinate ascent [71] was used to optimize the 

values of these parameters. Starting from an initial random point, the parameter space was 

examined in uniform steps (step size was 0.01), one parameter at a time. This process was 

repeated for all parameters until convergence (if the change in the target retrieval metric from 

one iteration to another is less than 0.05) or until the number of iterations exceeds 100. The 

values of — were chosen based on the MAP of retrieval results of the QL method. The values of — 

for TREC 7-8, ROBUST04, and GOV collections were set to 0.28, 0.32, and 0.30, respectively, all 

of which are greater than the MAP of the QL method by 0.08 (see Table 5.6). 

The same training procedure with the same — as above was used to optimize the 

parameters of the baseline methods, such as 7‹>,ö  in (5.9), 7�,ö  , 7´,ö	and the thresholds ”q, ”C	, 

and ”E. 
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Figure 5.5 illustrates the impact of the upper and lower thresholds on MAP (i.e., ”C and 

”E) for different collections at the concept layer	Æ	 = 	2. Because of the dependency between ”C 

and ”E in the approximate solution to the optimization problems, ”C and  ”E are obtained 

iteratively one after the other by holding the other parameter fixed to a value obtained in the 

previous iteration. When the value of the upper threshold is less than the optimum, more non-

useful concepts are added to the candidate list of expansion concepts. When the value of the 

upper threshold is greater than the optimum, some useful concepts may not be selected as 

expansion concepts. When the value of the lower threshold is less than the optimum, the 

selection process may terminate earlier, and a number of useful concepts may not be examined 

at all. When the value of the lower threshold is greater than the optimum, the proposed method 

will evaluate more concepts in total, which is against its main objective. Overall, although the 

upper and lower thresholds are dependent on each other, the upper threshold has the main 

effect on the accuracy of selected concepts, while the lower threshold has the main effect on the 

number of examined concepts. 

Comparison of Methods 

Table 5.5 provides comparison of performance of the proposed method with the 

baselines described in Section 5.3. As follows from this table, the best performing baseline is 

Method A, which is the most similar to the proposed method, since Method A and the proposed 

method both minimize the number of examined concepts. This can potentially reduce the effect 

of topic drift and results in superior performance of these methods. 

The outermost concept layer, in which a method is able to identify the concepts that can 

increase the precision of retrieval results in another interesting criterion for method comparison. 
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A method that is able to identify effective expansion concepts in the outer concept layers is more 

robust, since these layers include higher number of noisy concepts. As follows from Table 5.5, 

the average outermost layer across different collections (rounded to the nearest integer), in 

which the baselines A-D and the proposed method were able to identify effective expansion 

concepts is 3, 3, 2, 2 and 4, respectively. Therefore, it can be concluded that the proposed method 

and the methods that have multiple thresholds tend to perform better than the methods that 

have a single threshold. The other conclusion that can be made from this table is that the average 

outermost  layer  across  different  collections (rounded  to  the  nearest  integer), in which the 4 

Table 5.5. Comparison of retrieval performance of the proposed method with the baselines  
in terms of MAP for different number of examined concept layers.   
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Table 5.6. Comparison of retrieval performance of the proposed method with the baselines. * 
and † indicate statistically significant improvement in terms of MAP and P@20 according to 
Wilcoxon signed rank test over SDM/LCE with #	 < 	0.05 and #	 < 	0.1, respectively. Percentage 
differences in retrieval performance of Method A relative to SDM/LCE as well as the proposed 
method relative to SDM/LCE and Method A are shown in parentheses. 

 

baselines and the proposed method were able to discover effective concepts, are 2 and 3 for the 

collection- and ConceptNet-based concept graphs, respectively. Overall, it can be also seen that 

the methods using ConceptNet-based concept graph (CNet) obtain higher MAP than the methods 

using collection-based concept graphs automatically constructed using HAL (HAL). 

In Table 5.6, the performance of the proposed method is compared with QL, RM, SDM, 

LCE and the best performing methods in Table 5.5 that use collection- and ConceptNet-based 

concept graphs. As opposed to the upper part of Table 5.6, all the methods in its lower part also 

use unigram concepts from the top retrieved documents for query expansion, in addition to the 
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concepts from the concept graphs. The same collection- and ConceptNet-based concept graphs 

were used to obtain the results in the lower and upper parts of Table 5.6. The weights of the PRF 

unigram concepts were obtained using the RM model [51]. 

Several conclusions can be made from Table 5.6. First, Method A provides significant 

improvement over QL and SDM when the concept graph is generated by ConceptNet, while the 

proposed method has significant improvements over the baselines QL and SDM whether the 

concept graph is generated by HAL or ConceptNet. Second, Method A provides a significant 

improvement over SDM in the 5 cases, when it does not incorporate PRF concepts, however it 

provides a significant improvement over LCE only in one of the cases when it uses PRF concepts. 

Although the proposed method provides a smaller improvement over LCE, when it uses PRF 

concepts, than over SDM, when it does not use PRF concepts, the improvements that are 

achieved in these two cases are significant. Finally, although the parameters are estimated with 

the goal of maximizing MAP, the proposed method demonstrates significant improvement over 

the baselines (QE and SDM) also in terms of P@20. 
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CHAPTER 6 A BAYESIAN APPROACH TO UTILIZE KNOWLEDGE BASES IN MEDICAL INFORMATION 

RETRIEVAL 

6.1. Introduction 

IR methods for CDS have been the focus of several recent studies and evaluation 

campaigns. Specifically, the CDS track at the 2014–2016 Text Retrieval Conference (TREC) [95, 91, 

89] sought to evaluate systems that provide evidence-based information in the form of full-text 

articles from the open access subset of PubMed Central to clinicians in response to medical case 

descriptions or admission notes as queries. The key challenges faced by these systems are the 

verbosity of queries, which include a complete account of patient visits, including details such as 

their vital signs and prescribed medications (e.g., queries in the CDS track of the 2016 TREC 

consist of the note, description, and summary fields with averages of 237, 120 and 33 terms, 

respectively); and vocabulary mismatch, which occurs when a query uses related concepts or 

different words to refer to the same concept in the relevant documents. To address these 

challenges, recently proposed systems [13, 12, 102] utilize techniques such as query 

interpretation, which involves locating clinical concepts using biomedical information extraction 

tools such as MetaMap [5], query expansion, which enriches the query with additional new 

terms, and query reduction, which removes terms with lower importance from the query [83, 27, 

13, 12, 99].  

Query expansion is one of the most effective techniques in boosting the retrieval performance in 

IR systems for CDS [83]. To enrich the query and alleviate the vocabulary mismatch problem, the 

query expansion approaches either use knowledge bases (such as the Unified Medical Language 

System (UMLS) and Medical Subject Headings (MeSH)), a collection of textual documents (such 
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as medical literature and electronic medical records) or a combination of them. One of the 

popular methods in the former approach is to obtain the expansion concepts through a pseudo 

relevance feedback (PRF) approach, i.e., by extracting concepts from top-ranked documents. 

Knowledge-based query expansion methods are useful when the knowledge base provides 

related concepts that also appear in the relevant documents. On the other hand, PRF-based 

query expansion approaches can improve the quality of the retrieval system if the initial list of 

retrieved documents is relevant enough to the query. 

Table 6.1: An example of a query from the 2017 TREC precision medicine track [90].  

Disease Gastric cancer 

Gene mutations (PIK3CA, E545K) 

Age 54 

Gender Male 

Other Depression 

As in the general case of IR systems for CDS, the goal of IR systems for CDS in PM is to 

help healthcare providers find documents that are relevant to a patient case in an archive of 

biomedical articles. For example, a clinician may pose a query, such as that described in Table 6.1 

that includes information about the cancer type, patient age, gender and other factors regarding 

the patient case, such as gene mutations. In general, queries posed to IR systems for CDS in PM 

have three distinct properties. First, these queries are significantly shorter than medical case 

descriptions. Therefore, the proposed method is focused on effective query expansion rather 

than on information extraction and concept weighting. Second, these queries are structured with 

the fields of queries of differing importance. Third, these queries contain both textual and non-

textual information. Specifically, they typically include genetic variant data (e.g., mutations in 
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patient genes characterized by the gene name, such as “PIK3CA”, and amino acid (AA) position 

codes within the mutated gene, such as “E545K2”). Genetic variants play an important role in 

personalizing treatment because they can cause complex diseases, such as cancers, that share a 

similar set of symptoms to respond differently to the same treatment [8]. Therefore, the 

proposed method is focused on effectively incorporating gene mutation information into 

biomedical article retrieval.  

Medical literature, such as PubMed, and medical data, such as UMLS, are two critical 

resources in the CDS systems. Bayesian networks provide a framework to utilize these two 

resources in the decision-making process. For example, Antal et al. [4] proposed to leverage 

medical literature to capture the prior belief in learning the dependency of two medical entities. 

In [4], the given data are considered as evidence to update the prior belief. In this work, we also 

learn a Bayesian network by incorporating medical literature and data from knowledge bases. In 

contrast to [4], in the IR problem we tackle, the prior knowledge regarding dependency of 

medical entities is provided by the medical knowledge bases, and the prior belief regarding the 

dependency of entities is updated given the query and its collection of medical literature. 

Besides, our Bayesian network is designed to facilitate retrieving medical articles that are 

relevant to a patient case under the PM paradigm. 

To improve the accuracy of IR for CDS in the PM paradigm, we propose Bayesian Precision 

Medicine (BPM), which is a Bayesian approach for query expansion that utilizes information from 

knowledge bases as well as given queries. The focus of this work is to leverage relationships 

between mutated genes and candidate expansion concepts provided in the knowledge bases to 

perform query expansion. Because each mutated gene is often implicated in a variety of diseases 
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and can affect various tissues depending on each patient case, a naive automatic query expansion 

approach can deviate the topic (or aboutness) of the query away from the patient case. This 

problem, which is often called topic drift [62], makes many regular IR methods, such as the 

relevance feedback model [52], ineffective for this task [113]. We tackle this problem through 

our Bayesian approach and by utilizing a collection of medical documents, i.e., PubMed, and a 

genomic knowledge base, i.e., Catalog of Somatic Mutations in Cancer (COSMIC) [34].  

BPM leverages the mentioned knowledge bases to compute a prior probability that a 

candidate concept for query expansion is related to a mutated gene mentioned in the query. 

Then, by using this prior probability and information provided in the query, it computes a 

posterior probability of a candidate concept being related to a given query. The main challenge 

that we addressed in this medical IR task is the limitation on the size of the training data that was 

obtained by medical experts for a limited number of queries3. In this IR task, to address the 

vocabulary mismatch problem, features from multiple resources (knowledge bases and 

collection of medical literature) are required which makes the traditional query expansion 

methods to perform poorly due to their need for a large number of training data. To tackle this 

problem, we introduce a number of assumptions in our method to simplify its training process. 

It is worthwhile to highlight the main contributions of this proposed method. (1) We are 

the first to introduce a Bayesian approach for expanding medical queries in a PM paradigm. (2) 

We provide a comprehensive analysis of our method under different scenarios of extracting 

concepts from the collection of biomedical articles and knowledge bases and under different 

configurations of our model.  

6.1. Method 
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BPM selects a list of concepts for query expansion via a Bayesian approach by measuring 

the relatedness of these concepts to the query. BPM leverages information from knowledge 

bases as well as given queries combining textual and genomic information. As depicted in Figure 

6.1, BPM executes the following steps for query expansion: 

 

Figure 6.1: The architecture of our Bayesian method (BPM) that leverages multiple knowledge 
bases to measure the relatedness of candidate expansion concepts to the given query in a 
precision medicine paradigm. 

1. BPM generates a list of candidate concepts for query expansion (such as “PIK3C4”, 

“gastrointestinal”, ···) by using UMLS and the Drug-Gene Interaction Database (DGIdb) 

(see Section 6.2).  

2. Using COSMIC and PubMed, BPM estimates the prior probability of relatedness of a 

candidate concept (such as “PIK3C” or “gastrointestinal”) to a mutated gene mentioned 

in the query (such as “PIK3CA”) (see Section 6.2).  

3. Using PubMed, BPM estimates the likelihood of having a patient case described by 

features in the query (such as those in Table 6.1) given a mutated gene and a candidate 

concept (see Section 6.2).  
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4. Using prior probabilities and previously estimated likelihoods, BPM estimates posterior 

probabilities to determine whether to accept a candidate expansion concept (see Section 

6.2).  

Candidate Expansion Concepts: 

Given each patient case, BPM generates a list of candidate expansion concepts that likely fills the 

vocabulary gap between a query and its relevant biomedical articles and ultimately improves the 

retrieval accuracy. As shown in Figure 6.3, BPM utilizes the following three sources to select 

candidate concepts for query expansion:  

1. UMLS table of relationships (MRREL): BPM selects concepts that are related to diseases 

or gene names in the query according to MRREL.  

2. Top-ranked documents from PubMed: BPM selects concepts that appear in top-ranked 

documents for the original query. In the experiments of this work, we extract 40 top- 

ranked concepts according to the relevance model [52] from 25 top-ranked documents.  

3. DGIdb [38]: BPM selects the names of drugs that have interactions with mutated genes 

according to DGIdb.  

The Bayesian Approach  

Each given query, which describes a patient case, represented by the set of features Q·. BPM 

estimates the probability of relatedness of a candidate expansion concept *+ to a query (i.e., 

#(*+|Q·) ). As described in Section 6.2 and shown in Figure 6.2(b), the set of features Q·, which 

BPM directly extracts from the query fields, contains six feature types (“Disease”, “Gene name”, 

“AA mutation”,  “Age”,  “Gender”  and  “Other”).  We  denote  the  name  of  the  mutated  gene  
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(a) An illustration of features extracted from 
the COSMIC knowledge base used in (6.7) to 
compute the prior probability of relatedness 
of a candidate expansion concept to a 
mutated gene.  

(b) An illustration of features extracted from 
the query used in (6.11) to compute the 
likelihood of the query given a candidate 
expansion concept and a mutated gene.  

Figure 6.2: An illustration of the Bayesian networks used to incorporate information from the 
COSMIC knowledge base (i.e., “Gene name”, “AA mutation code”, “Primary site”, and “Primary 
histology”) and information from the query (i.e., “Disease”, “Gene name”, “AA Mutation code”, 
“Age”, “Gender”, and “Other”) to compute the prior probability in (6.7) and the likelihood in 
(6.11).  

 

Figure 6.3: An illustration of the process to retrieve biomedical articles for the example query in 
Table 6.1 expanded by using the sources described in Section 6.2. This figure shows that by 
expanding the query with concepts from different sources, BPM fills the vocabulary gap between 
a query and its relevant document in the collection. In this figure, “gastrointestinal” and 
“amplification” are concepts from top-ranked documents, BYL719 (Phosphatidylinositol 3-Kinase 
α-Selective Inhibition With Alpelisib) is from DGIdb, and PI3K (Phosphoinositide 3-kinase) is from 
UMLS table of relationships.  
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mentioned in the query by a code, such as “PIK3CA”, by ,. As we will show later, the mutated 

gene , is often the most important feature in the set of features extracted from the query (Q·). 

Therefore, we separate , from the rest of features in the set Q· and write the posterior 

probability #(*+|Q·) as follows:  

																																																																					#(*+|Q·) 	= 	#(*+|,, QR)         (6.1)  

where Q· 	= 	 {,} 	∪ 	QR. By following a Bayesian approach, BPM computes #(*+|QR) by first 

learning the prior probability of the candidate expansion concept *+ being related to the mutated 

gene g mentioned in the query (#(*+|,)) thorough incorporating features from the COSMIC 

knowledge base (Q�). Next, by incorporating more information from the query, BPM assesses the  

Table 6.2: Table of Notations. 
Notation  Definition  

*+  candidate expansion concept, such as “gastrointestinal” 

Q� set of features extracted from the COSMIC knowledge base 

Q· set of features extracted from the query that describes a patient case 

QR set of features extracted from the query excluding the mutated gene name  

, mutated gene name, such as “PIK3CA” 

#(*+|.) probability of concept *+  being related to feature . 

#(.|,) probability of an association of feature . with mutated mutated gene ,	 

#(	QR|*+, ,) likelihood of having a patient case represented by QR conditioned on concept 
*+  and mutated gene , 

#(*+|,) prior probability of concept *+ being related to mutated gene ,  

#(*+|,, QR) posterior probability of concept *+ being related to mutated gene , and 
features in QR extracted from query  
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relatedness of the candidate expansion concept *+ to the query and decides whether the 

candidate concept *+  should be selected as an expansion concept for a given query.  

By following a similar formulation as in [96], we use Bayes’ rule to rank the candidate 

expansion concept *+  based on its relatedness to the query as follows:  

																																													#oU‚„ùÆoù	 = 	#(*+|,, QR) 	=
	·(56,‰Â|4)	·(‰Â|4)

·(	‰R|4)
	     

which can be rewritten as:  

																																						#oU‚„ùÆoù	 = 	
	·(56|4)·(	‰Â|5+,4)

·(	‰R|4)
	=

	·´∞m´	×	L∞ã+L∞ÊmmB

5md�≥õd≥
	    (6.2)	

Because we compute #(*+|,, QR) to rank the candidate concepts and the denominator in the 

above equation is a constant of the candidate expansion concept *+, we can write:  

																																																#(*+|,, QR) 	∝ 	#(*+|,)#(	QR|*+, ,)      (6.3) 

This Bayesian approach is demonstrated in Figure 6.2. As shown in Figure 6.2, in the first step 

(described in Section 6.2), by utilizing only the knowledge bases, we estimate the prior probability 

of relatedness of each candidate expansion concept to the mutated gene mentioned in the query. 

As explained in sections 6.2 and 6.2, at the next step, by utilizing the information provided in the 

query, we assess the relatedness of each candidate expansion concept to the query. Then, as 

explained in Section 6.2, we select the expansion concepts according to their relatedness to the 

query.  

Features  

To estimate the relatedness of a candidate expansion concept to a query, BPM leverages 

two sets of features, Ë� and ËR, extracted from the COSMIC knowledge base and a query, 

respectively. As illustrated in Figure 6.2(a), the sets of features Fs, which are extracted from the 
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table of COSMIC mutation data6, contain a list of approximately 6 million records of patients with 

a type of cancer that may have been caused by one of approximately 30,000 gene mutations. 

Ë�	includes features of type “Gene name”, “AA mutation code”, “Primary site”, and “Primary 

histology” that are extracted from COSMIC. Table 6.3 presents an illustration of data extracted 

from COSMIC for the mutated gene “PIK3CA”, which BPM utilizes to extract the features in Ë� 

given PIK3CA as the mutated gene. For example, given “large intestine” as the value of feature 

with type “Primary site”, BPM uses this table by counting the number of samples (patient records) 

in this table that have a mutation in gene PIK3CA and have “large intestine” as the primary site 

(tissue) affected by this mutated gene. This will be described in more detail in the next section.  

As illustrated in Figure 6.2(b), the set of features extracted from a query ( ËR) include “Disease”, 

“Gene name”, “AA mutation code”, “Age”, “Gender”, and “Other”. BPM directly extracts these 

features from the fields of the queries illustrated in Table 6.1. BPM extracts the set of features 

“Gene name” and “AA mutation code” from the query field “gene”, while it extracts the features 

“Age” and “Gender” from the query field “demographic”. The features “Disease” and “Other” are 

described by the query fields “disease” and “other”, respectively. The “Other” feature contains 

factors that are related to the patient case, such as symptoms, secondary diseases, and surgical 

procedures.  

BPM also incorporates term frequency and co-occurrence features measured from the 

collection of medical articles in PubMed in computing the prior probability (#(*+|,)) and 

likelihood (#(	QR|*+, ,)). We used a January 2017 snapshot of 26.8 million PubMed abstracts7. As 

                                                        
6 Publicly available at https://cancer.sanger.ac.uk/cosmic/download\#download-3. We used COS-MIC v84, 
released 13-FEB-18. 
7 Publicly available at https://bionlp.nlm.nih.gov/trec2017precisionmedicine/ 



www.manaraa.com

81 
 

 

described in Section 6.2, BPM uses UMLS, PubMed, and DGIdb as sources to generate a list of 

candidate expansion concepts, while, as described in this section, BPM uses PubMed and COSMIC 

as sources to measure the relatedness of these concepts to a query.  

Computing Prior Probabilities Given Knowledge Bases  

Given the PubMed and COSMIC knowledge bases, BPM computes the prior probability of 

the relatedness of the concept *+  to the mutated gene g (i.e., #(*+|,)). In computing the prior 

probability #(*+|,), BPM incorporates COSMIC to provide information regarding a mutated 

gene, such as its primary sites (tissues) and histologies. To do so, BPM extracts the set of features 

Fs from the COSMIC knowledge base. In this work, for simplicity, we only consider four feature 

types “Gene name”, “AA mutation code”, “Primary site”, and “Primary histology”.  

BPM computes the prior probability #(*+|,) by averaging over all possible assignments 

to all features in Q�, which are extracted from the COSMIC knowledge base. In other words,  

                   #(*+|,) 	= 	∑ 	#(*+, Qw = 	.w, . . . , Qd = .d|,)2È,…,2g 		  (6.4) 

To compute #(*+|,), we need to estimate an exponential number of probabilities which 

is not feasible in practice when the number of features	(n) is large. Therefore, following similar 

approach as [29, 4], we assume an Independence between features in the Bayesian network to 

be able to compute #(*+|,) with a linear number of probabilities. Therefore, we estimate 

#(*+|,) as  

                         #(*+|,) 	≈ 		∑ #(Q = .|,)#(*+|,, Q	 = 	.)2 		  (6.5) 

where . is a value of feature Q	 ∈ 	Ë�. #(Q|,) determine the importance of feature Q in 

computing #(*+|,) and is dependent on the mutated gene g mentioned in the query. In other 

words, #(*+|,) accounts for the differences in the importance of different features (i.e., “Gene 
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name”, “AA mutation code”, “Primary site”, and “Primary histology”) in computing the prior 

probabilities.  

As an example, if we consider the feature Q to have only one type, e.g., “Primary site” 

(see Table 6.3), the sum in the above equation is over all possible primary sites affected by a 

mutated gene g according to the COSMIC knowledge base. In the example illustrated in Table 

6.3, the feature “Primary site” has five distinct values.  

The probabilities #(*+|,, .) and #(.|,) in the above equation can be interpreted as follows:  

1. #(.|,): the probability of association of feature f with the mutated gene g, and  

2. #(*„|,, .): the probability of the concept *+being related to the mutated gene , and 

feature ..  

Table 6.3: An example of data extracted from COSMIC for the gene “PIK3CA”. Only 12 of 13,120 
columns corresponding to gene ,	 =	“PIK3CA” are shown in this figure. According to the COSMIC 
database, “breast” and “large intestine” are among the most affected primary sites when the 
gene “PIK3CA” has a mutation.  

 

We estimate the probability #(.|,) from the COSMIC mutation data. Table 6.3 presents 

an example of data extracted for the gene PIK3CA from the COSMIC database. The probability 

#(.|,) is estimated from COSMIC as follows:  

                                               	#(.|,) 	= 	·(2,4)

·(4)
	≈ 	

u∂,Î

uÎ
	,		  (6.8) 



www.manaraa.com

83 
 

 

where M4 is the number of cancer patients who have mutations in gene ,	and M2,4 is the number 

of cancer patients who have mutations in gene g and are associated with feature f according to 

the COSMIC database.  

The probability #(*+|., ,) is estimated by using the collection of medical articles in 

PubMed as the knowledge base. We represent both concept *+  and the values of feature . by 

ngrams, such as “high blood pressure” and “colon cancer”. BPM uses PubMed to measure the 

degree of the semantic relationship of concept *+ to mutated gene g and feature	.. To do so, we 

find documents that contain ngram representations of feature . and mutated gene g (i.e., 12,4), 

and among these documents, we find the portion that also contains the ngram representation 

of concept *+, shown by 156,2,4. Therefore, we estimate the probability #(*+|., ,)	as follows:  

                                          #(*+|., ,) 	=
	·(56,2,4)

	·(2,4)
	≈ 	

|Gh6,∂,Î|

|G∂,Î|
	.			  (6.9) 

where |156,2,4| and |12,4| are the number of documents in the sets	156,2,4 and 12,4, and 

|156,2,4| 	≤ 	 |12,4|, respectively, since 156,2,4 ⊆ 	12,4. To avoid a zero-frequency problem, we use 

the following smoothing method [123]:  

																																																				#(*+|., ,) ≈ 	
Ìe|Gh6,∂,Î|

	Ìu	e	|G∂,Î|
		  (6.10) 

where N is the number of documents in the collection and β is a constant that we consider to 

equal 10ÅÓ.  

Example. As an example, we assume BPM computes the prior probability of the concepts c_e= 

“PI3K” and c_e = “exon” to the gene g = “PIK3CA” by using COSMIC and PubMed as the knowledge 

bases. For simplicity, in this example, we take a single feature (“Primary site”) as the only feature 



www.manaraa.com

84 
 

 

extracted from the COSMIC database and use the samples shown in Table 6.3 to compute the 

prior probability	#(*+|,). By using the maximum likelihood (ML) approach in (6.8), we obtain 

#(*+ 	= 	“PI3K”|,	 = 	“PIK3CA”) 	= 	0.239	 

 and  

#(*+ 	= 	“exon”|,	 = 	“PIK3CA”) 	= 	0.087	 

Table 6.4: An illustration of steps to compute the prior probability of the candidate expansion 
concept *+	being related to gene g. For the sake of illustration, the probability #(.|,) is 
computed using only the sample data shown in Table 6.3. The values of |12,4| and |156,2,4| and 
as a result #(*+|., ,) are estimated by using the PubMed collection.  

(a) 
 

(b) 

We can observe from this example that the computed prior probability can distinguish a concept 

such as “PI3K”, which is more related to gene “PIK3CA” from a concept such as “exon”, which is 

related to all genes in general.  

Computing Likelihoods Given Query and Knowledge Bases  

Given a patient case in the form of a query, BPM assesses the relatedness of the candidate 

expansion concept *+  to the query. To do so, first, BPM computes #(	ËR|*+, ,), which is the 
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likelihood of having a patient case represented by the query features ËR conditioned on the 

candidate expansion concept *+  and mutated gene ,. For example, BPM may compute the 

likelihood of having a patient case described in Table 6.1 conditioned on having a mutation in 

gene “PIK3CA” and having the concept “large intestine” as a candidate expansion concept.  

By following a similar approach in the previous section in simplifying the computation of 

prior probability, we can estimate the likelihood #(	ËR|*+, ,) through a Naive Bayes conditional 

independence assumption [53] over features extracted from the query (ËR). Based on this 

assumption, we can estimate #(ËR|*+, ,) from the probability of feature .	 ∈ 	Ëˆ being related 

to concept *+  and gene g as follows:  

#(	ËR|*+, ,) 	= 	 ˜ #(Qw 	= 	.w, . . . , Qd 	= 	.d|*+, ,)
2È,...,2g

				

                                                             ≈		∏ #(Q	 = 	.|*+, ,)2 			

Since the features in ËR have significantly different importance, we estimate the likelihood in the 

above equation as 

                                     log #(	ËR|*+, ,) ≈ ∑ 2̆ log #(Q = .|*+, ,)2 		                                        (6.11)	

where 0	 < 	@2 	< 	1 depends on the importance of feature type F in computing the likelihood 

#(	ËR|*+, ,). We assume the importance of a feature type (@2) to be independent of the mutated 

gene (,) mentioned in a query and the candidate expansion concept (*+). We obtain @2 through 

the cross-validation process. As an example, if we consider f to be the feature “Other” extracted 

from the query, the second product in the above equation is over all the phrases listed in the 

query field “Other”, and 2̇ is the weight of feature “Other” in computing the likelihood. The 

probability #(.|*+, ,) is computed in a manner similar to that described in (6.9) as follows:  



www.manaraa.com

86 
 

 

                                           #(.|*+, ,) 	=
	·(2,56,4)

·(56,4)
	≈ 	

|G∂,h6,Î|

|G56,4|
		   (6.12) 

To avoid a zero-frequency problem, we use the following smoothing method [123]:    

                                                  #(.|*+, ,) ≈ 	
Ìe|G∂,h6,Î|

Ìue|Gh6,Î|
	                         (6.13) 

where M is the number of documents in the collection and ” is a constant that we consider to 

equal 10ÅÓ in our experiments. 

Example. As an example, we assume BPM aims to compute the likelihood #(	ËR|*+, ,) for the set 

of features Ëˆ being extracted from the example query illustrated in Table 6.1 conditioned on 

the concept *+  =“gastrointestinal” and mutated gene , =“PIK3CA”. This example is illustrated in 

Figure 6.2(b) for the case of extracting the following set of features from the example query:  

QR 	= 	 {“TÆU„äU„”	 = 	“˚äU‚ùÆ*	*än*„ù”, “˚„n„	näÑ„”	 = 	“û?á3`¸”, “¸¸	Ñ∏‚ä‚Æon	*o™„”	

= 	“{545á”, “¸,„”	 = 	54,			“˚„n™„ù”	 = 	“ÜäK„”, “ø‚ℎ„ù”	 = 	“T„#ù„UUÆon”}	 

As Table 6.5 illustrates, if we provide the same weights for all features, we obtain log 

likelihoods as  

log(#(	QR	|*+ 	= 	“,äU‚ùoÆn‚„U‚ÆnäK”, ,	 = 	“û?á3`¸”)) 	= 	−4.92	 

and  

log(#(	QR	|*+ 	= 	“„˝#ù„UU”, ,	 = 	“û?á3`¸”)) 	= 	−5.68	,	 

which reveals that when the candidate expansion concept is a general concept, such as “express”, 

it has a lower likelihood than the case of a candidate expansion concept that is more related to 

the original query, such as “gastrointestinal”. Later, we will show that by providing different 

weights for different features based on their importance, the computed likelihood and 
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consequently the computed posterior probability provide a better understanding of the 

relatedness of a candidate expansion concept to the query.  

Computing Posterior Probabilities Given Query and Knowledge Bases   

As the final step, by using (6.3), BPM computes the posterior probabilities for all candidate 

expansion concepts and ranks them accordingly. To achieve this goal, from the prior probabilities 

#(*+|,) computed in Section 6.2 and likelihoods #(QR|*+, ,)	computed in Section 6.2, BPM uses 

the Bayes’ rule to compute the posterior probability #(*+|,, QR) for each candidate expansion 

concept *+. In other words, BPM turns the prior belief (computed by using (6.7)) by incorporating 

evidence about the patient case (computed by using (6.11)) into a posterior belief (computed by 

using (6.3)).  

Representing Concepts  

The term dependencies play an important role in representing the original and expansion medical 

concepts in the retrieval models [27, 13]. Similarly, BPM uses an SDM to capture the term 

dependencies of concepts in its retrieval model. As described in the next section, in the retrieval 

model of BPM, the relatedness of a document to a query is computed from the relatedness of 

that document to the original and expansion concepts in the query. Given the concept “gastric 

cancer”, BPM computes the relevance of a document to this concept by computing the following:  

1. the numbers of times that the concept terms “gastric” and “cancer” appear in the given 

document,  

2. the number of windows in the given document that contain “gastric” and “cancer” in the 

same order as that in the n-gram representation of the concept, and  
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3. the number of windows in the given document that contain the mentioned two terms in 

any order.  

Table 6.5: An illustration of steps in our method to compute the relatedness of feature f extracted 
from the query to the candidate expansion concept *+ and gene ,.  

 

BPM normalizes these three values over the size of the document and obtains a weighted 

linear combination of them to compute the relevance of a given document to a query concept. 

BPM repeats this process for all of the original and expansion concepts in the query and computes 

the relevance of document D to the given patient case described in the query. We obtain the 

sizes of the mentioned windows via the cross-validation process. We formulate the ranking of 

collection documents given n-gram concepts in the next section.  

Ranking Candidate Concepts and Collection Documents  

BPM utilizes a retrieval system that is composed of two steps of  

1. ranking candidate concepts to expand the query and 

2. ranking collection documents given the expanded query.  

In the first step, BPM selects candidate expansion concept *+  as the expansion concept if 

#(*+|,, QR) computed by (6.2) goes above a threshold. We obtain this threshold through the 

cross-validation process.  
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Figure 6.4: An illustration of the graphical representation of SDM for our query expansion method 
in a PM task. In this illustration, the query has two original concepts (Gastric cancer, and 
Depression) and two expansion concepts (Gastrointestinal and Amplification). This query is 
extracted from the query set of 2017 TREC-PM task, and the medical article with PMID (PubMed 
ID) 15994075 (https://www.ncbi.nlm.nih.gov/pubmed/15994075) is a relevant article for this 
query. Adding the expansion concepts to the query alleviates the vocabulary mismatch problem 
between the query and its relevant documents since they often appear in the relevant articles 
but do not exist in the original query. 

As can be seen from the example illustrated in Figure 6.3 and the graphical representation 

in Figure 6.4, at the second step, BPM ranks the collection documents given the expanded query 

(=| ) according to [16] as follows:  

U(T, 	=Œ ) 	= U(document, original	query)	

                                                                  +	Ø+U(document, expansion	concepts)                         (6.14)  

where Ø+	depends of the importance of expansion concepts in comparison to the original query 

concepts in computing the relevance score U(T, 	=Œ ). This equation can be rewritten as:  

                     U(T, =|) 	= ∑ 	@LU(T, =L)L∈q 	+	∑ 	@JU(T, =|J)J∈$ 			                               ( 6.15) 

where =L  is a field in the original query =. As shown in Figure 6.3, the fields in the original query 

are disease name, mutated gene name, AA mutation code, age, gender, and other. In the above 

equation, =, =|J, and =|  contain original concepts from the query, expansion concepts extracted 

from the source ˝, and all expansion and original concepts, respectively. In the above equation, 

Medical Article
PMID: 15994075

Gastric Cancer Depression Gastrointestinal Amplification

Original Query

Expanded Query
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% is the list of sources for the query expansion introduced in Section 6.2. We can observe from 

the above equation that different fields of the query and different expansion concept sources 

receive different weights (i.e., @L	and @J) in computing the score.  

By using SDM, illustrated in Figure 6.4, BPM computes the score U(T, =L) (and similarly 

U(T, =|J)) as follows:  

U(T, =|L) = Ø8	U(document, unigrams	in	=L)	

                                                                  +	ØC	U(document, ordered	bigrams	in	=L)		

																																																							+	Ø'	U(document, unordered	bigrams	in	=L)         (6.16)                                

All of the three score functions in the left-hand side of (6.16) are computed from the collection 

of medical articles in PubMed. For example, if =L  = “Gastric Cancer”, then the first score function 

in (6.16) depends on the number of articles that have words “Gastric” or “Cancer”, the second 

score function in (6.16) depends on the number of articles that have the word “Gastric” after the 

word “Cancer” in windows of limited size, and the third score function in (6.16) depends on the 

number of articles that have words “Gastric” and “Cancer” in any order in windows of limited 

size. The above equation can be rewritten as  

U(T, =L) = 78 	∑ .8(T, ∏)¿∈qk
+ ∑ à7C	.C(T, π) + 7'	.'(T, π)â>∈qk

	                             (6.17) 

where ∏ and π are a unigram and a bigram in =L. .8(T, ∏) is a feature function that determines 

the score of the collection document T given a unigram in the query. The feature functions 

.'(T, π) and .C(T, π) determine the score of the collection document T given the bigram π in 

the query with and without considering the order of the terms in the bigram.  
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The feature function .8(T, ∏) is computed by using Bayesian smoothing with Dirichlet 

priors [123] from the count of unigrams ∏ in document T (‚.¿,A) and in the collection	(*.¿) as 

follows:  

                                                 .8(T, ∏) = log (
≥2…,µef

h∂…
|i|

|A|ef
)                    (6.18) 

where |`| is the number of terms in the collection (i.e., length of the collection), |T| is the number 

of terms in document T (i.e., length of document T), and p is a constant. BPM computes 

U(T, =|)	and U(T, =|J)	in a manner similar to that described above.  

We define ‚.#mB(>),A and ‚.#¿º(>),A as the numbers of windows with sizes n' and nC in 

the document T that contain constituent terms of bigram π, respectively, in the same order as 

that in the concept’s bigram representation and in any order. For example, for the concept “long 

intestine”,	‚.#mB(>),A is the number of windows that contain the term “long” before the term 

“intestine”, and ‚.#¿º(>),A is the number of windows that contain these two terms in any order. 

BPM computes .'(T, π) and .C(T, π) as follows:  

                                   .'(T, π) 	= 	log*
≥2#j+(,),µef

h∂#j+(,)
|i|

|A|ef
-	                                                            (6.19) 

and  

                                                .C(T, π) 	= 	log*
≥2#….(,),µef

h∂#….(,)
|i|

|A|ef
-                  (6.20) 

where *.#mB(>) = 	∑ ‚.#mB(>),AA 	 and *.#¿º(>) = 	∑ ‚.#¿º(>),A	A 	are the numbers of windows in 

all documents in the collection that contain bigram π with and without considering whether the 

order of terms is the same as that in the concept’s representation, respectively. We obtain the 

window sizes n' and nC and the constant p in the above equation via the cross-validation 
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process. For ngram concepts with n	 > 	2, BPM divides them into multiple bigrams. For example, 

BPM represents the concept “malignant gastric ulcer” in the form of the two bigrams “malignant 

gastric” and “gastric ulcer”.  

Consideration of Mutated Gene vs Gene Mutation in Computing the Prior Probabilities  

As an alternative to our solution described above, which is to compute the prior 

probability of a candidate expansion concept *+  being related to mutated gene , in the query 

(e.g., #(*+ = 	“gastrointestinal”|,	 = 	“PIK3CA”)), the prior probability of a candidate 

expansion concept being related to gene mutation Ñ can be computed (e.g., #(*+ =

	“gastrointestinal”|Ñ	 = 	“PIK3CA	(E545K)”). Here, gene mutation Ñ is represented by a gene 

name and an AA mutation code (e.g., “PIK3CA (E545K)”). However, due to the sparsity of these 

ngrams in PubMed, the latter solution requires a collection much larger than PubMed to compute 

#(*+|Ñ) and #(*+	|Ñ, QR). For example, in a collection of 26 million articles in PubMed, there are 

only 192 documents that contain both terms “PIK3CA” and “E545K” in any order, and there are 

only 3 documents that contain the terms “PIK3CA”, “E545K” and “gastrointestinal” in any order. 

Therefore, instead of Ñ, we propose to consider the mutated gene name g in computing the 

prior probability. We will discuss this solution in more detail in Section 6.3.  

6.3. Experiments 

Dataset and Implementation Details 

Our training data consist of 18,729 unique medical articles whose relevance to at least 

one of the 30 available queries was judged by experts in the field [90]. These medical articles 

were obtained from PubMed and proceedings of the American Association for Cancer Research 
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(AACR)8 and the American Society of Clinical Oncology (ASCO)9. As shown in Figure 6.5, of 22,642 

total judgments, the articles were judged as “Not Relevant” in most cases (82.89% of the 

judgments), and “Definitely Relevant” and “Partially Relevant” in only 8.93% and 8.18% cases, 

respectively. For more details regarding the relevance assessment steps taken to gather the 

relevance judgments, please see [90]. Other than a January 2017 snapshot of 26 million PubMed 

documents, 70,025 abstracts from the AACR and ASCO proceedings were adopted as collections 

to evaluate BPM10. These medical articles, the queries, and their relevance judgments for the PM 

task were provided by the 2017 TREC-PM track and are publicly available11. The 2017 TREC-PM 

track contains a task of retrieving clinical trials (from ClinicalTrials.gov) which is beyond the scope 

of this work. There are 30 patient cases described in the form of queries12, and their 

corresponding lists of relevance judgments13 with their full annotations (including disease, gene, 

etc.)14 were provided by the National Institute of Standards and Technology (NIST). 

We use the Indri search engine [105] to index the medical articles in the collection and to 

run the queries. We used MetaMap to map the phrases in the query to their UMLS concept IDs. 

We only index the following fields of the PubMed articles because these fields often contain the 

most important information about the article: 

1. Article Title, 

2. Abstract, 

                                                        
8 http://www.aacr.org/ 
9 https://www.asco.org/ 
10 https://bionlp.nlm.nih.gov/trec2017precisionmedicine/ 
11 http://www.trec-cds.org/2017.html 
12 http://www.trec-cds.org/topics2017.xml 
13 http://www.trec-cds.org/qrels-treceval-abstracts.2017.txt 
14 https://drive.google.com/open?id=1IH4dL4OKG7bv57K8DreOeSAfJgkgC4sd 
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3. MeSH Headings List, and 

4. Chemical List. 

These fields of PubMed articles were extracted from the XML files provided by the 2017 

TREC-PM track. The MeSH Headings List contains MeSH terms that are most related to each 

article. The Chemical List contains the MeSH terms of the chemical compounds described in each 

article. In the 2017 TREC-PM track, articles from AACR and ASCO proceedings are represented by 

only their titles and abstracts, and we index only these two fields in our work. We use a three-

fold cross-validation strategy to tune the hyper-parameters of BPM and the baselines. To 

compute the hyper-parameter values, we use a randomized search method [19] with 100 

iterations that samples the hyper-parameters according to an exponential distribution (with scale 

100). To simplify our retrieval model, we consider all articles to have the same set of weights for 

their fields. 

The queries describe patient cases using the fields mentioned in Table 6.6. Table 6.1 

represents an example of queries used in this task. The gene field contains gene names, such as 

“BRAF15” and “NRAS16”. In 10 patient cases, the AA mutation codes of the genes were also 

available, e.g., “V600E17” and “Q61K18”. In 13 patient cases, instead of AA mutation codes, the 

types of mutation (described by “amplification”, “deletion”, “fusion”, “fusion transcript”, 

“inactivating”, and “loss” in the query) were provided in the queries. In 8 patient cases, only the 

names of mutated genes were provided. Of 30 patient cases, which were described in the form 

                                                        
15 B-Raf proto-oncogene, serine/threonine kinase 
16 NRAS proto-oncogene, GTPase 
17 BRAF c.1799T>A 
18 NRAS c.181C>A 
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of queries, 50% were male, and 50% were female. These cases were created by precision 

oncologists at the MD Anderson Cancer Center and the OHSU Knight Cancer Institute [90]. We 

present a histogram of diseases (cancer types) for the patients described in the query set of our 

training data in Figure 6.6(a). From this figure, we can see that patients with 17 types of cancers 

were included. The patients with lung related cancer types were in the majority, representing 7 

of 30 patients. On the other hand, the age distribution of patients with respect to their gender, 

demonstrated in Figure 6.6(b), demonstrates that all patients described in the query set ranged  

 

Figure 6.5: Counts of relevance judgments of the queries in the training data for the three levels 
of relevance: “Definitely Relevant”, “Partially Relevant” and “Not Relevant”.  

Table 6.6: Properties of fields in the 30 patient cases described in the form of queries.  

Fields  Properties 

Disease  17 cancer types, such as “cholangiocarcinoma” 
Gene  Up to 3 genes, such as “KRAS” 
Mutation  In 10 queries, specific mutation codes, such as “Q61K”, are specified 
Age  Average: 52.6 years, standard deviation: 13.5, and range: 26-81 years 
Gender  50% female and 50% male 
Other  The other factors include secondary diseases (such as “Type II Diabetes”), 

symptoms (such as “hypertension”), and surgical procedures (such as “Whipple”) 

in age between 26 and 81 years, with a mean age of 52.6 years (mean age of female patients, 

51.2 years; mean age of male patients, 54 years) and a standard deviation of 13.54. 

Baselines and Variations of the Model 
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We adopted the best-performing methods in TREC-PM 2017 [37] and TREC-CDS 2015 [13] as two 

of the baselines. We considered INTGR (INTeGrating semantic and statistical concepts for medical 

query expansion) [12] as another baseline because it is an optimized method to integrate 

knowledge bases to perform query expansion. 

 

(a) 

 

(b) 

Figure 6.6: (a) histogram of cancer types and (b) distributions of ages with respect to the gender 
of patients in the query set used for tuning the parameters of BPM.  

To study the effects of the three knowledge bases mentioned in Section 6.2 in generating 

the list of candidate expansion concepts for query expansion, we considered the following four 

variations of BPM: 

• UMLS-BPM: In this variation, the list of candidate expansion concepts contains only 

concepts from the table of relationships in UMLS (i.e., MRREL.RRF). In other words,  we only 

considered concepts that are related to the UMLS concepts in the original query according 

to this table. 

•  DGIdb-BPM: In this variation, we added a concept to the list of candidate expansion 

concepts if it had an interaction with the concepts in the query according to DGIdb table of 

interactions of drugs and genes. 
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• RM-BPM: In this variation, we added concepts to the list of candidate expansion concepts 

if they were highly ranked by the relevance feedback (RM) model [52]. We ran the original 

query after concatenating all of its fields into a single free text query, obtained the top 40 

documents, and considered the top 40 highly ranked unigram and bigram concepts 

extracted from these documents as candidate concepts. 

• Wiki-BPM: This baseline is similar to RM-BPM, but instead of running original queries on 

a PubMed collection to obtain the top-ranked documents, we ran the queries on a 

Wikipedia dump (01/01/2018) and ranked candidate expansion concepts by using the RM 

model. Our main goal in considering Wiki-BPM is to evaluate the effectiveness of top-

ranked documents from PubMed in comparison to those retrieved from a general-purpose 

collection of documents. 

Baselines and Variations of the Model 

Setup. We use the following four evaluation metrics in comparing BPM with the baselines 

and its four variations in Table 6.7. 

• infNDCG (inferred normalized discounted cumulative gain) [121]: infNDCG uses 

sampling techniques to estimate NDCG (normalized discounted cumulative gain) [65] 

by incorporating graded relevance judgments with missing values. NDCG is derived by 

normalizing the Discounted Cumulative Gain (DCG) measure, and DCG (discounted 

cumulative gain) is obtained from total accumulated relevancy gains discounted by 

giving higher weights to the documents with higher ranks. 

• P@10 (precision at 10) [65]: P@10 is the percentage of relevant documents in top 

10 retrieved documents. 
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•  R-prec (R-precision) [65]: Given R as the number of relevant documents for the 

query, R-prec is defined as precision at R. 

Result. Table 6.7 shows that BPM has a statistically significant improvement over the 

best-performing baseline (UTDHLTFF [37]) when BPM uses all three knowledge bases described 

in Section 6.2 to generate the list of candidate expansion concepts. Because UTDHLTFF [37] uses 

a similar set of knowledge bases, this improvement is an indication of the effectiveness of our 

Bayesian approach in ranking the candidate concepts for query expansion. This table shows that 

without using all three knowledge bases as a source of generating a list of candidate expansion 

concepts, the improvement in the performance of BPM over UTDHLTFF [37] is not significant. 

Effect of Knowledge Bases on Generating the List of Candidate Expansion Concepts 

Table 6.7 shows that the concepts from top-ranked documents improve the quality of the 

query more than the concepts obtained from the UMLS table of relationships and the DGIdb table 

Table 6.7: Comparison of BPM with state-of-the-art baselines using the TREC-PM 2017 query set. 
The statistical significance of BPM in comparison to UTDHLTFF [37] according to a one-sided 
Fisher's randomization test computed at the 95% significance level is shown by * in this table. 

Methods  infNDCG  R-prec  P@10 

WSU-IR [13]  0.3853  0.2682  0.5937 
INTGR [12]  0.4021  0.2739  0.6010 
UTDHLTFF [37]  0.4593  0.2987  0.6172 
UMLS-BPM  0.4507  0.2952  0.6166 
DGIdb-BPM  0.4556  0.2970  0.6191 
RM-BPM  0.4624  0.2937  0.6135 
Wiki-BPM  0.4611  0.2996  0.6188 
BPM  0.4837*  0.3160*  0.6292* 

of interactions of drugs and genes. This difference is potentially due to (1) the noise in the UMLS 

relationship table and DGIdb and (2) the fact that the top-ranked documents are more dependent 
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on the given patient case. In this section, we provide a deeper analysis of the effect of each 

knowledge base on the performance of BPM. 

Setup. In Table 6.7, we present the performance of BPM by varying the weights of 

expansion concepts from different resources (i.e., @J  in (6.16)) in computing the relevance score 

of a collection document (T) given an expanded query (=|). In this figure, the weights @CDEF, 

@GD, and @A:;B> = 	1 − @CDEF − @GD are the weights of concepts obtained from UMLS, top-

ranked documents from PubMed, and DGIdb, respectively. If a concept is obtained from multiple 

concept resources, we remove it from the list of expansion concepts to avoid ambiguity in our 

analysis. 

Result. From Table 6.7, we observe that the concepts that BPM extracted from top-

ranked documents provide a significantly better improvement than the concepts from other 

resources.  More specifically, this table reveals that BPM performs best when the concepts from 

top-ranked documents have the highest weight, which highlights the importance of adjusting the 

list of candidate concepts by employing resources (such as top-ranked documents) that are more 

dependent on the query itself. 

 
Figure 6.7: Performance of BPM in terms of infNDCG in the case of generating the list of candidate 
expansion concepts by utilizing the concept resources UMLS, DGIdb and top-ranked documents 
(RM) from PubMed with different set of weights for their corresponding expansion concepts. The 
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weight of DGIdb (@A:;B>) is obtained from the weight of UMLS (@CDEF) and RM (@GD) as 
@A:;B> 	= 	1 − @CDEF − @GD. These weights are shown by @J in (6.16).   

Query Level Analysis 

Setup. We analyze the performance of BPM in comparison with that of UTDHLTFF (the 

best-performing method in TREC-PM 2017) in Figure 6.8 by comparing the improvement of BPM 

over its baseline at the query level. The thirty queries shown in this figure are from the query set 

employed in TREC-PM 201719. 

 Result. Figure 6.8 demonstrates that in 63.33% of the queries, BPM outperforms its 

baseline (UTDHLTFF [37]). By studying the best-performing queries, we understand that BPM has 

the advantage of finding documents that do not have any of the terms explicitly mentioned in 

the query. This shows that, by utilizing a Bayesian approach to expand the queries with their 

related concepts, BPM can fill the vocabulary gap between queries and their relevant documents 

in the collection. If we define difficult query as a query that has an infNDCG value lower than 0.1 

given UTDHLTFF as the baseline retrieval method, BPM often has lower performance on difficult 

queries than its baseline because it relies on top-ranked documents, which often do not provide 

reliable expansion concepts when the query is difficult [120]. 

Effect of Query Features 

Setup. To understand the effect of each query feature, we examine the performance of 

BPM by varying the weight of features ËR. We present the results of this experiment in Figure 

6.9.  

 

                                                        
19 http://www.trec-cds.org/topics2017.xml 
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Figure 6.8: Query-level analysis of BPM over the best-performing baseline (UTDHLTFF). This 
figure shows the performance improvement of BPM over UTDHLTFF in terms of infNDCG on the 
query level. 

Result. Figure 6.9 shows that the query features “Disease” and “Gene name” have higher 

importance than all other features in the query. The feature “Gender” has the least importance 

in comparison to the other features in the query. Although the query feature “AA mutation code” 

provides information regarding the patient cases, it has less importance than “Gene name” and 

“Disease” in our retrieval model. In Figure 6.10, we show the percentage of documents in the 

training data that contain the queries' AA mutation codes and are either relevant or nonrelevant. 

We observe from Figure 6.10 that “AA mutation code” in the queries tends to occur more in 

nonrelevant documents than in relevant ones and therefore can cause the topic-drift problem in 

our query expansion model. We can conclude from Figure 6.9 that by using only the features 

“Disease” and “Gene name”, we can simplify our retrieval model with a negligible decrease in 

retrieval performance. 
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(a) 

 

(b) 

 

(c) 

Figure 6.9: Weights of the most important query features (i.e., “Disease” and “Gene name”) in 
comparison to the query features “AA mutation code” (shown in Figure 6.9(a)), “Gender” (shown 
in Figure 6.9(b)) and “Other” (shown in Figure 6.9(c)). The weight of the K-th query feature is 
shown by @L  in (6.15).  

 

Figure 6.10: Percentage of documents in the training data that contain queries' AA mutation 
codes and are either relevant or nonrelevant. This figure demonstrates that the queries' AA 
mutation codes tend to occur more in nonrelevant documents than in relevant ones. Therefore, 
using this query field in a retrieval model can cause a decrease in the accuracy of retrieved 
documents. In addition, using this field in a query expansion model can cause the topic-drift 
problem. 

Table 6.8:  Performance of BPM with respect to different values of unigram weights (78) in SDM. 

 infNDCG  R-prec P@10 
BPM (78 = 	0)  0.1783  0.0914  0.2132 
BPM (78 = 	0.25)  0.2416  0.1332  0.2865 
BPM (78 = 	0.5)  0.3467  0.2755  0.4653 
BPM	(78 = 	0.75)  0.4902  0.3318  0.6410 

BPM (78 = 	1)  0.4473  0.2841  0.6011 
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Effect of Using the Sequential Dependence Model to Represent Concepts 

Setup. We examine the weight of unigrams (78) in comparison to the weights of ordered 

and unordered bigrams (7' and	7C) in the SDM described in sections 6.2 and 6.2 and formulated 

in (6.17). Table 6.8 presents the performances of BPM for different values of weights of unigrams 

in the SDM when the weights of ordered and unordered bigrams are assumed to be the same 

(i.e., 7C 	= 7' = 	1 − 78).  

Result. Table 6.8 demonstrates that the unigrams have the most critical role in SDM of 

medical concepts. In other words, we observe that when 78 = 	0.750, 7C = 	0.125, and	7' =

	0.125, the performance of BPM is better than that achieved when lower or higher values of 

78	are used. 

Success and Failure Analysis 

Setup. We examine the performance of BPM by analyzing its successes and failures in 

comparison to the best-performing baseline UTDHLTFF [37]. Table 6.9 represents the best- and 

worst-performing queries. 

Result. In the best- and worst-performing queries, the disease names are lung 

adenocarcinoma and breast cancer and gene names are MET20 and PTEN21. We observe that the 

best- and worst-performing queries are those that provide the most and fewest useful concepts 

in their list of expansion concepts, respectively. More specifically, we observe that the list of 

expansion concepts obtained from the RM has significantly higher quality in the case of the best-

performing query than in the case of the worst-performing query. In the best performing query, 

                                                        
20 MET proto-oncogene, receptor tyrosine kinase 
21 phosphatase and tensin homolog 
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the improvement in the quality of query is mainly due to the addition of the concepts “EGFR22” 

and “NSCLC23” which often appear in the relevant documents. BPM extracts both of these two 

concepts from top-ranked documents. In the worst-performing query, the main reason of decline 

in the retrieval performance is due to the addition of the expansion concept “heart failure” to 

the query. This concept appears in a number of top-ranked documents such as PMID: 10321507 

(https://www.ncbi.nlm.nih.gov/pubmed/10321507) but it does not appear in the articles judged 

as relevant. These results reveal that depending on the query, the quality of the concepts 

extracted from top-ranked documents can be significantly different. Therefore, having resources 

other than top-ranked documents can increase the effectiveness of query expansion method on 

average for all the queries. 

 Table 6.9:  The best- and worst-performing queries for BPM in comparison to the best 
performing baseline UTDHLTFF [37]. 

 (a) Best-performing Query                                  (b) Congestive Heart Failure 

Qualitative Analysis 

Setup. We provide a qualitative analysis of BPM given the example query in Table 6.1. 

“PIK3CA (E545K)” is the gene mutation, and “gastric cancer” is the type of cancer described in 

this example query. The patient is a 54-year-old male who suffers from depression according to 

the query. In our Bayesian approach, we perform three steps: generating the list of candidate 

                                                        
22 epidermal growth factor receptor 
23 non-small-cell lung carcinoma 

number 25  number 23 
disease Lung Adenocarcinoma  disease Breast Cancer 
gene MET Amplification  gene PTEN Loss 
demographic 48-year-old Male  demographic 54-year-old Female 
other Emphysema  other  Congestive Heart Failure 
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concepts for query expansion, computing prior probabilities, and computing posterior 

probabilities. In this qualitative analysis, for the sake of simplicity, BPM generates the list of 

candidate expansion concepts by selecting only unigram concepts that exist in top-ranked 

documents for the original query (obtained using the RM model). In this section, we also consider 

the set of features Fs containing features of only types “Primary site” or “Primary histology” 

extracted from the COSMIC knowledge base. 

Result. 

Step I - generating the list of candidate expansion concepts: BPM uses the concepts 

shown in Figure 6.11, which were obtained by using the RM model from top-ranked documents, 

as the list of candidate expansion concepts. To examine the effectiveness of each candidate 

expansion concept on the retrieval performance of BPM, we expand the query with each 

individual concept and measure the amount of improvement this query expansion provides. We 

categorize these concepts based on their individual effects on retrieval performance as follows: 

1. concepts with positive effects, such as “gastroesophageal”, “amplification”, and 

“stomach”; 

2. concepts with no effect, such as “patient”, “study”, and “cell”; and 

3. concepts with negative effects, such as “carcinoma”, “tumor”, and “AKT24”. 

                                                        
24 Protein kinase B 
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Figure 6.11: An illustration of the list of candidate concepts and their effectiveness scores for the 
example query shown in Table 6.1. We obtain these concepts by using the RM model from top-
ranked documents. The effectiveness scores of the candidate expansion concepts are computed 
by expanding the query with only one of these concepts and computing the improvement in the 
value of infNDCG of the retrieved documents. 

We observe from this figure that the concepts with no effect are often general concepts 

that can occur in any medical article, while concepts that have positive or negative effects are 

those that tend to be more discriminative (i.e., occur in more limited medical articles). Figure 

6.11 shows that approximately half of the concepts in this list have no or a negative effect on the 

quality of the expanded query. This figure also reveals that the concepts with positive effects 

tend to have higher relevance to the given query. 

Step II - computing the prior probabilities: To compute the prior probabilities #(*+|,) 

from (6.7) BPM first computes the probability of feature f extracted from COSMIC being related 

to gene g, i.e., #(.|,), and the probability of candidate expansion concept *+ being related to 

feature f and gene g, i.e., #(*+|,, .). 

BPM computes #(.|,) from (6.8) by counting the number of cancerous patients with 

mutated gene g (i.e., M4) and the number of cancerous patients with mutated gene , that have 

feature f (i.e., M2,4) in COSMIC. An illustration of computed #(.|,) for the example query in Table 

6.1 is shown in Figure 6.12 for the case of having the feature types “Primary site” and “Primary 

histology”.  For  simplicity,  we  only  consider  these  two feature types in the experiments in this 
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Figure 6.12: An illustration of prior probability #(.|,) for feature f (“Primary site” and “Primary 
histology”) being related to the mutated gene , =”PIK3CA”. To compute this probability, M2,4 is 
normalized by M4 = 	2737, which is the number of patient cases that have the mutated gene 
“PIK3CA” in the COSMIC knowledge base.  

 

Figure 6.13: An illustration of the probability of candidate expansion concept *+ being related to 
feature f (i.e., #(*+|.)) for the mutated gene “PIK3CA” and features of type “Primary site” and 
“Primary histology”. Not all the values of features are shown in this figure for the sake of visibility. 
In this example, only two concepts, “gastroesophageal” and “patient”, are studied. The 
probabilities in this figure are obtained by normalizing |156,2| by the number of documents in the 
collection that contain concept *+  (i.e., |156|). 01560 equals 19600 and 5421011 for the concepts 
“gastroesophageal” and “patient”, respectively. 
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Figure 6.14: An illustration of the estimated values for the prior probability #(*+|,) for the 
mutated gene ,	 =”PIK3CA” and candidate expansion concepts *+  in the case of using the 
features of type “Primary site” and “Primary histology”.  

 

(a) 

 

(b) 

Figure 6.15: An illustration of the estimated values for the (a) likelihood #(	ËR|*+, ,) and (b) 
posterior probability #(*+|,, ËR) for the mutated gene , =”PIK3CA” and candidate expansion 
concepts *+  extracted from top-ranked documents. Only the top 15 concepts are shown in this 
figure.  

section. This figure implies that according to COSMIC, in the majority of the cancerous patient 

cases, the primary sites affected by the gene mutation “PIK3CA (E545K)” are breast (in 33.54% of 
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the cases) and large intestine (in 26.85% of the cases). Although the patient case described in the 

example query has gastric cancer with the mutated gene “PIK3CA”, according to COSMIC, the 

stomach is the primary site affected by this mutated gene in only 2.81% of cancerous patient 

cases. On the other hand, the primary histology for the mutated gene “PIK3CA” is “carcinoma” 

in 94.06% of the patient cases. 

As the next step in computing the prior probability, BPM computes the probability of 

concept *+  being related to mutated gene g and feature ., i.e., #(*+|,, .), from (6.9) by using 

the medical articles in PubMed as the knowledge base. To do so, BPM computes the 

cooccurrence of ngram representations of *+, ,, and f in the collection of medical articles in 

PubMed. An illustration of computed values of #(*+|,, .) for the concepts “gastroesophageal” 

and “patient” is shown in Figure 6.13. 

By using (6.7), BPM computes the prior probabilities #(*+|,) from the probabilities 

#(.|,)	and #(*+|,, .). Figure 6.14 highlights that by using the computed prior probabilities, BPM 

is able to distinguish the discriminative concepts (often with positive or negative effects) from 

general concepts (often with no effect). 

Step III - computing the likelihoods and posterior probabilities given evidence from the 

query: At this step, BPM incorporates information regarding a patient case from the given query 

in computing the posterior probabilities. To do so, as illustrated in Figure 6.15(a), BPM first 

computes the likelihood #(	ËR|*+, ,). This figure suggests that BPM gives the highest scores at 

this stage to the concepts that are more related to the patient cases described in the query. By 

using the likelihood and prior probability, BPM computes the posterior probabilities illustrated in 

Figure 6.15(b). By choosing concepts that have posterior probabilities #(*+|,, ËR) above a 
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threshold, BPM selects candidate concepts as the expansion concepts. We can observe from 

Figure 6.15(b) that the majority of selected concepts have positive effects on the retrieval 

performance of BPM. 
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CHAPTER 7 CONCLUSIONS 

In this dissertation, we presented a concept representation method and an optimization 

technique to jointly determine the weights of statistical and semantic concepts from different 

sources. Our proposed methods represent CDS queries using statistical and semantic concepts 

from the query, top retrieved documents and knowledge bases. Our work logically extends 

previous research, which focused only on studying the utility of statistical query concepts [16], 

semantic query concepts [15], statistical and semantic query concepts [27], statistical [70, 17] 

and semantic [101] concepts from the query and top retrieved documents for query expansion. 

Experiments using a collection of PubMed articles and TREC Clinical Decision Support (CDS) track 

queries indicate that the proposed method significantly outperforms state-of-the-art baselines 

for ad hoc and medical IR. 

We also presented a two-stage method for sequential selection of effective concepts for 

query expansion from the concept graph. We formulated an optimization problem with the 

objective of evaluating the least possible number of candidate concepts needed to ensure a given 

precision of retrieval results. In the first stage of the proposed method, the candidate concepts 

are sorted using a number of computationally inexpensive features. This sorting is utilized in the 

second stage to sequentially select expansion concepts by using computationally expensive 

features. Experimental evaluation using TREC collections indicates that the proposed method 

outperforms state-of-the-art baselines, which instead of minimizing the number of evaluated 

concepts, aim to minimize the number of selected concepts or maximize a concept quality 

measure. We also found out that our method and the baselines produce more accurate results 

using ConceptNet-based than the collection-based concept graph HAL. We believe that applying 
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our method to the case of entity-based queries and knowledge graphs is an interesting future 

direction for extending this work.  

Finally, we proposed an information retrieval method for a clinical decision support 

system in the precision medicine paradigm. Through a Bayesian approach, our method 

incorporates information gathered from multiple knowledge bases including a collection of 

biomedical articles in PubMed and Catalog of Somatic Mutations in Cancer (COSMIC). Our 

Bayesian approach for query expansion improves the retrieval accuracy by discovering related 

concepts that can fill the vocabulary gap between a medical query and its relevant documents in 

the collection. Since in a precision medicine paradigm, the mutated gene mentioned in a query 

provides critical information regarding a patient case, our method first utilizes knowledge bases 

to rank a list of candidate concepts for query expansion based on their relatedness to the 

mutated gene in the query. Next, our method utilizes the other information mentioned in the 

query to update its prior belief regarding the relatedness of a candidate expansion concept to 

the query. We performed experiments on the 2017 TREC-PM dataset and observed that our 

method significantly outperforms state-of-the-art baselines. 
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[64] C. D. Manning and H. Schu ẗze. Foundations of statistical natural language processing. 

MIT press, 1999. 

[65] P. R. Manning, Christopher D. and H. Schutze. Introduction to information retrieval, 

volume 1. Cambridge University Press, 2008. 



www.manaraa.com

121 
 

 

[66] A. T. McCray. The umls semantic network. In Proceedings/the... Annual Symposium on 

Computer Application [sic] in Medical Care. Symposium on Computer Applications in 

Medical Care, pages 503–507. American Medical Informatics Association, 1989. 

[67] A. T. McCray and S. J. Nelson. The representation of meaning in the umls. Methods of 

information in medicine, 34(1-2):193–201, 1995. 

[68] C. McDonald, S. Huff, J. Suico, and K. Mercer. Logical observation identifiers names and 

codes (loinc) users’ guide. Indianapolis: Regenstrief Institute, 2004. 

[69] D. Metzler and W. B. Croft. A markov random field model for term dependencies. In 

Proceedings of the 28th annual international ACM SIGIR conference on Research and 

development in information retrieval, pages 472–479. ACM, 2005. 

[70] D. Metzler and W. B. Croft. Latent concept expansion using markov random fields. In 

Proceedings of the 30th annual international ACM SIGIR conference on Research and 

development in information retrieval, pages 311–318. ACM, 2007. 

[71] D. Metzler and W. B. Croft. Linear feature-based models for information retrieval. 

Information Retrieval, 10(3):257–274, 2007. 

[72] D. A. Metzler, W. B. Croft, and A. McCallum. Direct maximization of rank-based metrics 

for information retrieval. Technical report, Center for Intelligent Information Retrieval, 

2005. 

[73] A. Miller. Subset selection in regression. CRC Press, 2002. 

[74] M. Mitra, A. Singhal, and C. Buckley. Improving automatic query expansion. In 

Proceedings of the 21st annual international ACM SIGIR conference on Research and 

development in information retrieval, pages 206–214. ACM, 1998. 



www.manaraa.com

122 
 

 

[75] H. Mobahi and J. W. Fisher III. On the link between gaussian homotopy continuation 

and convex envelopes. In Energy Minimization Methods in Computer Vision and 

Pattern Recognition, pages 43–56. Springer, 2015. 

[76] W. Morgan, W. Greiff, and J. Henderson. Direct maximization of average precision by 

hill-climbing, with a comparison to a maximum entropy approach. In Proceedings of 

NAACL-HLT’04, pages 93–96, 2004. 

[77] A. Mourao, F. Martins, and J. Magalhaes. Novasearch at trec 2014 clinical decision 

support track. Technical report, DTIC Document, 2014. 

[78] X. Mu and K. Lu. Towards effective genomic information retrieval: The impact of query 

complexity and expansion strategies. Journal of Information Science, 36(2):194–208, 

2010. 

[79] X. Mu and K. Lu. Improving umls metathesaurus query expansion based on the query 

specificity and length. 2012. 

[80] F. B. Nardon and L. A. Moura. Knowledge sharing and information integration in 

healthcare using ontologies and deductive databases. Medinfo, 11(Pt 1):62–6, 2004. 

[81] R. Navigli. Word sense disambiguation: A survey. ACM Computing Surveys (CSUR), 

41(2):10, 2009. 

[82] S. J. Nelson, K. Zeng, J. Kilbourne, T. Powell, and R. Moore. Normalized names for clinical 

drugs: Rxnorm at 6 years. Journal of the American Medical Informatics Association, 

18(4):441–448, 2011. 

[83] V. Nguyen, S. Karimi, S. Falamaki, and C. Paris. Benchmarking clinical decision support 

search. arXiv preprint arXiv:1801.09322, 2018. 



www.manaraa.com

123 
 

 

[84] L. Nie, B. D. Davison, and X. Qi. Topical link analysis for web search. In Proceedings of 

the 29th ACM SIGIR, pages 91–98, 2006. 

[85] P. Norvig. Marker passing as a weak method for text inferencing. Cognitive Science, 

13(4):569–620, 1989. 

[86] J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In 

Proceedings of the 21st ACM SIGIR, pages 275–281, 1998. 

[87] D. Rao, P. McNamee, and M. Dredze. Entity linking: Finding extracted entities in a 

knowledge base. In Multi-source, Multilingual Information Extraction and 

Summarization, pages 93–115. Springer, 2013. 

[88] T. C. Rindflesch and A. R. Aronson. Ambiguity resolution while mapping free text to the 

umls metathesaurus. In Proceedings of the Annual Symposium on Computer 

Application in Medical Care, page 240. American Medical Informatics Association, 1994. 

[89] K. Roberts, D. Demner-Fushman, E. M. Voorhees, and W. R. Hersh. Overview of the trec 

2016 clinical decision support track. In Proceedings of Text Retrieval Conference (TREC), 

2016. 

[90] K. Roberts, D. Demner-Fushman, E. M. Voorhees, W. R. Hersh, S. Bedrick, A. J. Lazar, 

and S. Pant. Overview of the trec 2017 precision medicine track. In Proceedings of TREC-

PM, pages 1–13, 2017. 

[91] K. Roberts, M. S. Simpson, E. Voorhees, and W. R. Hersh. Overview of the trec 2015 

clinical decision support track. Proceedings of TREC’15, 2015. 

[92] R. W. Schafer. What is a Savitzky-Golay filter? [lecture notes]. IEEE Signal Processing 

Magazine, 28(4):111–117, 2011. 



www.manaraa.com

124 
 

 

[93] W. Shen and J.-Y. Nie. Is concept mapping useful for biomedical information retrieval? 

In Experimental IR Meets Multilinguality, Multimodality, and Interaction, pages 281– 

286. Springer, 2015. 

[94] W. Shen, J.-Y. Nie, X. Liu, and X. Liui. An investigation of the effectiveness of concept-

based approach in medical information retrieval grium@ clef2014ehealthtask 3. 

Proceedings of the ShARe/CLEF eHealth Evaluation Lab, 2014. 

[95] M. S. Simpson, E. Voorhees, and W. Hersh. Overview of the trec 2014 clinical decision 

support track. In Proc. 23rd Text Retrieval Conference (TREC 2014). National Institute 

of Standards and Technology (NIST), 2014. 

[96] S. Sinha. Integration of prior biological knowledge and epigenetic information enhances 

the prediction accuracy of the bayesian wnt pathway. Integrative Biology, pages 1034– 

1048, 2014. 

[97] C. A. Smith and P. Z. Stavri. Consumer health vocabulary. In Consumer Health 

Informatics, pages 122–128. Springer, 2005. 

[98] C. A. Sneiderman, D. Demner-Fushman, M. Fiszman, N. C. Ide, and T. C. Rindflesch. 

Knowledge-based methods to help clinicians find answers in medline. Journal of the 

American Medical Informatics Association, 14(6):772–780, 2007. 

[99] L. Soldaini. The Knowledge and Language Gap in Medical Information Seeking. PhD 

thesis, Georgetown University, 2018. 

[100] L. Soldaini, A. Cohan, A. Yates, N. Goharian, and O. Frieder. Query reformulation for 

clinical decision support search. Technical report, DTIC Document, 2014. 



www.manaraa.com

125 
 

 

[101] L. Soldaini, A. Cohan, A. Yates, N. Goharian, and O. Frieder. Retrieving medical literature 

for clinical decision support. In Advances in Information Retrieval, pages 538–549. 

Springer, 2015. 

[102] L. Soldaini, A. Yates, and N. Goharian. Learning to reformulate long queries for clinical 

decision support. Journal of the Association for Information Science and Technology, 

68(11):2602–2619, 2017. 

[103] P. Sondhi, J. Sun, C. Zhai, R. Sorrentino, and M. S. Kohn. Leveraging medical thesauri 

and physician feedback for improving medical literature retrieval for case queries. 

Journal of the American Medical Informatics Association, 19(5):851–858, 2012. 

[104] P. Srinivasan. Retrieval feedback in medline. JOURNAL-AMERICAN MEDICAL 

INFORMATICS ASSOCIATION, 3:157–167, 1996. 

[105] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: A language model-based 

search engine for complex queries. Citeseer. 

[106] A. Sundaram. Information retrieval: A health care perspective. Bulletin of the Medical 

Library Association, 84(4):591, 1996. 

[107] V. Sundararajan, T. Henderson, C. Perry, A. Muggivan, H. Quan, and W. A. Ghali. New 

icd-10 version of the charlson comorbidity index predicted in-hospital mortality. 

Journal of clinical epidemiology, 57(12):1288–1294, 2004. 

[108] A. Tian and M. Lease. Active learning to maximize accuracy vs. effort in interactive 

information retrieval. In Proceedings of the 34th international ACM SIGIR conference 

on Research and development in Information Retrieval, pages 145–154. ACM, 2011. 



www.manaraa.com

126 
 

 

[109] M. Volk, S. Vintar, and P. Buitelaar. Ontologies in cross-language information retrieval. 

In Wissensmanagement, pages 43–50, 2003. 

[110] E. M. Voorhees. Query expansion using lexical-semantic relations. In SIGIR’94, pages 

61–69. Springer, 1994. 

[111] C. Wang and R. Akella. Concept-based relevance models for medical and semantic 

information retrieval. In Proceedings of CIKM’15, pages 173–182, 2015. 

[112] Y. Wang and H. Fang. Exploring the query expansion methods for concept-based 

representation. Technical report, DTIC Document, 2014. 

[113] Y. Wang, R. Komandur-Elayavilli, M. Rastegar-Mojarad, and H. Liu. Leveraging both 

structured and unstructured data for precision information retrieval. In Proceedings of 

TREC 2017, pages 1–17, 2017. 

[114] Z. Wang, K. Zhao, H. Wang, X. Meng, and J.-R. Wen. Query understanding through 

knowledge-based conceptualization. In Proceedings of the Twenty-Fourth 

International Joint Conference on Artificial Intelligence (IJCAI), 2015. 

[115] H. Wasserman and J. Wang. An applied evaluation of snomed ct as a clinical vocabulary 

for the computerized diagnosis and problem list. In AMIA Annual Symposium 

Proceedings, volume 2003, page 699. American Medical Informatics Association, 2003. 

[116] Z. Xie, Y. Xia, and Q. Zhou. Incorporating semantic knowledge with MRF term 

dependency model in medical document retrieval. In NLPCC’15, pages 219–228. 

Springer, 2015. 



www.manaraa.com

127 
 

 

[117] C. Xiong and J. Callan. Esdrank: Connecting query and documents through external 

semi-structured data. In International Conference on Information and Knowledge 

Management, volume 6, pages 3–1, 2015. 

[118] C. Xiong and J. Callan. Query expansion with freebase. In Proceedings of the 2015 

International Conference on The Theory of Information Retrieval, pages 111–120. ACM, 

2015. 

[119] Y. Xu, G. J. Jones, and B. Wang. Query dependent pseudo-relevance feedback based on 

wikipedia. In Proceedings of SIGIR’02, pages 59–66, 2009. 

[120] Z. Xu and R. Akella. Active relevance feedback for difficult queries. In Proceedings of 

the 17th ACM conference on Information and knowledge management, pages 459–

468. ACM, 2008. 

[121] E. Yilmaz, E. Kanoulas, and J. A. Aslam. A simple and efficient sampling method for 

estimating ap and ndcg. In Proceedings of the 31st annual international ACM SIGIR 

conference on Research and development in information retrieval, pages 603– 610. 

ACM, 2008. 

[122] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to 

ad hoc information retrieval. In Proceedings of the 24th ACM SIGIR, pages 334–342, 

2001. 

[123] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to 

information retrieval. In Proceedings of the 24th annual international ACM SIGIR 

conference on Research and development in information retrieval. ACM, 2001. 



www.manaraa.com

128 
 

 

[124] C. Zhai and J. Lafferty. Two-stage language models for information retrieval. In 

Proceedings of the 25th annual international ACM SIGIR conference on Research and 

development in information retrieval, pages 49–56. ACM, 2002. 

[125] C. Zhang and T. Chen. An active learning framework for content-based information 

retrieval. Multimedia, IEEE Transactions on, 4(2):260–268, 2002. 

[126] J. Zhang, L. Lin, S. Diao, Y. Li, R. Liu, W. Xu, and J. Guo. Pris at 2012 trec medical track: 

Query expansion, retrieval and ranking. Technical report, DTIC Document, 2012. 

[127] N. Zhiltsov, A. Kotov, and F. Nikolaev. Fielded sequential dependence model for ad-hoc 

entity retrieval in the web of data. In Proceedings of the 38th International ACM SIGIR 

Conference on Research and Development in Information Retrieval, pages 253– 262. 

ACM, 2015. 

[128] M. Zhong and X. Huang. Concept-based biomedical text retrieval. In Proceedings of the 

29th annual international ACM SIGIR conference on Research and development in 

information retrieval, pages 723–724. ACM, 2006. 

[129] W. Zhou, C. Yu, N. Smalheiser, V. Torvik, and J. Hong. Knowledge-intensive conceptual 

retrieval and passage extraction of biomedical literature. In Proceedings of SIGIR’07, 

pages 655–662, 2007. 

[130] W. Zhu, X. Xu, X. Hu, I.-Y. Song, and R. B. Allen. Using umls-based re-weighting terms as 

a query expansion strategy. In GrC, pages 217–222, 2006. 

 

  



www.manaraa.com

129 
 

 

ABSTRACT 

UTILIZING KNOWLEDGE BASES IN INFORMATION RETRIEVAL FOR 

CLINICAL DECISION SUPPORT AND PRECISION MEDICINE 

by 

SAEID BALANESHINKORDAN 

May 2019 

Advisor: Dr. Alexander Kotov  

Major: Computer Science 

Degree: Doctor of Philosophy 

Accurately answering queries that describe a clinical case and aim at finding articles in a 

collection of medical literature requires utilizing knowledge bases in capturing many explicit and 

latent aspects of such queries. Proper representation of these aspects needs knowledge-based 

query understanding methods that identify the most important query concepts as well as 

knowledge-based query reformulation methods that add new concepts to a query. In the tasks 

of Clinical Decision Support (CDS) and Precision Medicine (PM), the query and collection 

documents may have a complex structure with different components, such as disease and 

genetic variants that should be transformed to enable an effective information retrieval. In this 

work, we propose methods for representing domain-specific queries based on weighted 

concepts of different types whether exist in the query itself or extracted from the knowledge 

bases and top retrieved documents. Besides, we propose an optimization framework, which 

allows unifying query analysis and expansion by jointly determining the importance weights for 

the query and expansion concepts depending on their type and source. We also propose a 
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probabilistic model to reformulate the query given genetic information in the query and 

collection documents. We observe significant improvement of retrieval accuracy will be obtained 

for our proposed methods over state-of-the-art baselines for the tasks of clinical decision support 

and precision medicine.
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